搜档网
当前位置:搜档网 › 线段树在程序设计中的应用

线段树在程序设计中的应用

线段树在程序设计中的应用
线段树在程序设计中的应用

哈夫曼树及其应用(完美版)

数据结构课程设计设计题目:哈夫曼树及其应用 学院:计算机科学与技术 专业:网络工程 班级:网络 131 学号:1308060312 学生姓名:谢进 指导教师:叶洁 2015年7 月12 日

设计目的: 赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 1、熟悉树的二叉树的存储结构及其特点。 2、掌握建立哈夫曼树和哈夫曼编码的方法。 设计内容: 欲发一封内容为AABBCAB ……(共长 100 字符,字符包括A 、B 、C 、D 、E 、F六种字符),分别输入六种字符在报文中出现的次数(次数总和为100),对这六种字符进行哈夫曼编码。 设计要求: 对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能: 1.以二叉链表存储, 2.建立哈夫曼树; 3.求每个字符的哈夫曼编码并显示。

数据结构应用论文

数据结构应用论文 题目名称数据结构应用 课程名称数据结构(c语言版) 学生姓名宋杰伟王兵俞振光王黎明郭凯专业网络工程(2)班

数据结构应用 摘要 数据结构是计算机专业最基础也是最重要的学科之一。它和程序设计一起未计算科学其他后继课程的学习奠定了基础。在计算机广泛普及的今天,其应用几乎涵盖了人类社会的所有领域,而且在航空航天、军事、科学计算、信息检索、生产线控制等一些关键领域已经高度依赖计算机系统,而数据结构在其中起着无可替代的应用。 其实生活中也有好多应用数据结构的小事,只要留心观察,它无处不在。例如:我们的家族图谱,遗传病图谱,公司成员职位一览表都应用到了数据结构中的树;还有我们小的时候玩的丢手绢游戏其实也用到了数据结构中的循环列表,而且在换人时用到了循环列表的插入和删除。所以说,数据结构与我们的生活息息相关,学习和掌握好数据结构对我们处理日常生活中遇到的问题一定会有很大的帮助。 关键字 数据结构,计算机专业,学科,应用,逻辑结构,存储结构,算法优化。

参考文献 1、严蔚敏吴伟民数据结构(C语言版)清华大学出版社; 2、庄晋林杨彬实用数据结构与算法设计中国水利水电出版社; 3、翁惠玉俞勇数据结构:思想与实现; 4、百度百科。

正文 数据结构在计算机科学界至今没有标准的定义。个人根据各自的理解的不同而有不同的表述方法:Satartia Sahibah在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实 例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的集合”。Clifford A.Shaffer在《数据结构与算法分析》一书中的定义是:“数据结构是 ADT(抽象数据类型Abstract Data Type)的物理实现。” Robert L.Ruse在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。数据结构具体指同一类数据元素中,各元素之间的相互关系,包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构。 一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现

二叉树课程设计

实验6.1 实现二叉树各种基本运算的算法 编写一个程序algo6-1.cpp,实现二叉树的各种运算,并在此基础上设计一个主程序完成如下功能(T为如图所示的一棵二叉树): (1)以括号表示法输出二叉树T。 (2)输出H结点的左、右孩子结点值。 (3)输出二叉树T的叶子结点个数。 (4)输出二叉树T的深度。 (5)输出对二叉树T的先序遍历序列。 (6)输出对二叉树T的中序遍历序列。 (7)输出对二叉树T的后序遍历序列。 提示:创建二叉树的算法参见书上131页的算法6.4。按先序序列输入二叉树中结点的值(一个字符),#字符表示空树。输入序列: ABD##EHJ##KL##M#N###CF##G#I## 以括号表示法输出二叉树的结果为: A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))

程序段 #include #include #include //#define MAX 50 #define OK 1 //?t2?ê÷á′±í′?′¢?á11 typedef struct btnode { char Data;//?áμ?êy?Y?úèY struct btnode *Llink;//×ó×óê÷????struct btnode *Rlink;//óò×óê÷????}btnode,*btreetype; //11?ì???t2?ê÷ int InitBiTree(btreetype &T) { T=NULL; return OK; } //?¨á¢?t2?ê÷ void CreatBiTree(btreetype &T) {char ch; scanf("%c",&ch); if(ch==' ')T=NULL; else { T=(btreetype)malloc(sizeof(btnode)); if(!T)exit(-1); T->Data=ch; CreatBiTree(T->Llink); CreatBiTree(T->Rlink); } } //ê?3??áμ?μ?×óo¢×ó void LeftChild(btreetype &M,char e) {

线索二叉树课程设计

专业基础综合课程设计 设计说明书 线索二叉树的实现 学生姓名xxx 学号 班级 成绩 指导教师 数学与计算机科学学院 2012 年 6月 29日 专业基础综合课程设计评阅书

题目线索二叉树的实现 学生姓名学号 指导教师评语及成绩 成绩:教师签名:年月日答辩教师评语及成绩 成绩:教师签名:年月日教研室意见 总成绩:室主任签名:年月日注:指导教师成绩60%,答辩成绩40%,总成绩合成后按五级制记入。

课程设计任务书 2011—2012学年第2学期 专业:计算机应用技术学号:姓名: 课程设计名称:专业基础综合课程设计 设计题目:线索二叉树的实现 完成期限:自2012 年 6 月18 日至2012 年6月29 日共 2 周 设计内容: n个结点的二叉链表中含有n+1个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。这种加上了线索的二叉树称为线索二叉树(Threaded BinaryTree)。对一棵非线索二叉树以某种次序遍历使其变为一棵线索二叉树的过程称为二叉树的线索化。由于线索化的实质是将二叉链表中的空指针改为指向结点前驱或后继的线索,而一个结点的前驱或后继结点的信息只有在遍历时才能得到,因此线索化的过程即为在遍历过程中修改空指针的过程。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。 运用VC++编写一个程序实现前序线索二叉树、中序线索二叉树和后序线索二叉树,其中遍历要求用先左后右的递归或非递归算法来实现。 要求: 1)阐述设计思想,画出流程图; 2)任意建立一棵二叉树,采用前序、中序、后序三种方法线索化二叉树; 3)说明测试方法,写出完整的运行结果; 4)从时间、空间对算法分析; 5)较好的界面设计; 6)编写课程设计报告。 以上要求中第一个阶段的任务完成后,先将设计说明书的草稿交指导老师面审,审查合格后方可进入后续阶段的工作。设计工作结束后,经指导老师验收合格后将设计说明书打印装订,并进行答辩。 指导教师(签字):教研室主任(签字): 批准日期:2012年 6 月18 日 摘要

树和图

一、判断题: 1.二叉树是一棵无序树。() 2.在一棵二叉树中,假定每个结点只有左子女,没有右子女,对它分别进行中序遍历和后序遍历,则具有相同的结果。() 3.度为二的有序树等价于二叉树。() 4.树的带权路径长度最小的二叉树中必定没有度为1的结点。() 5.哈夫曼树一定是满二叉树。() 6. 满二叉树也是完全二叉树。() 7.设与一棵树T所对应的二叉树为BT,则与T中的叶子结点所对应的BT中的结点也一定是叶子结点。() 8.将一棵树转换成二叉树后,根结点没有左子树( ) 9.已知一棵二叉树的前序序列和后序序列可以唯一地构造出该二叉树。() 10用树的前序遍历和中序遍历可以导出树的后序遍历。() 11.在完全二叉树中,若某结点无左孩子,则它必是叶结点。()。 12.任何一棵二叉树都有n0=n2+1的关系式。() 二、填空题 1.假定一棵二叉树的结点个数为32,则它的最小深度为______。 2.假定一棵树的广义表表示为A(B(C, D(E, F,G), H(I, J))),则结点H的双亲结点为______。 3.在一棵二叉树中,度为2的结点有5个,度为1的结点有6个,那么叶子结点有______ 个。 4.树的双亲表示法便于实现涉及到______的操作,孩子表示法便于实现涉及到孩子的操作。 5.对于一颗具有n个结点的二叉树,对应二叉链表中指针域有______个用于指向子结点。 6.下图所示二叉树存储在一维数组中,则元素F的下标位置为______。

7.高度为k的二叉树具有的结点数目,最少为______,最多为______。 8.对任何一棵二叉树,若n0,n1,n2分别是度为0,1,2的结点的个数,则n0=_______。 9.一棵含有16个结点的完全二叉树,对他按层编号,对于编号为7的结点,他的双亲结 编号点为______左孩子编号为______、右孩子编号为______。 10.在含100个结点的完全二叉树,叶子结点的个数为________。 11.度数为0的结点,即没有子树的结点叫作________结点。同一个结点的儿子结点之间互 称为________结点。 12.若一棵完全二叉树含有121个结点,则该树的深度为___________。 13.已知一棵树的前序序列为ABCDEF,后序序列为CEDFBA,则对该树进行层次遍历得 到的序列为___________。 三、选择题 1.在一棵具有n个结点的二叉树中,所有结点的空子树个数等于______。 A. n B. n-1 C. n+1 D. 2*n 2.在一棵二叉树的第5层上,最多具有______个结点。 A. 14 B. 16 C. 31 D. 32 3.在一棵深度为h的完全二叉树中,所含结点个数不少于______。 A. 2h B. 2h+1 C. 2h -1 D. 2h-1 4.一棵树的广义表表示为a(b(c), d(e(g(h)), f)),则该二叉树的高度为______。度为______。 度为2的结点数为______。 A. 2 B. 3 C. 4 D. 5 5.将一棵有40个结点的完全二叉树从上到下,从左到右依次对结点进行编号,根结点的 编号为1,则编号为15的结点的左孩子的编号为______。 A.30 B.31 C.16 D.32 6.在一棵树中,每个结点最多有______个直接前驱结点。 A. 0 B. 1 C. 2 D. 任意多个 7. 树中所有结点的度数之和等于结点总数加______。 A. 0 B. 1 C. -1 D. 2 四、应用题 1.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,…,n k个度为k的结 点,问该树有多少个叶子结点?

课程设计二叉树

安徽理工大学 数据结构 课程设计说明书题目: 二叉树的遍历集成 院系:计算机科学与工程学院 专业班级: 学号: 学生姓名: 指导教师: 2015年 01 月 9 日

安徽理工大学课程设计(论文)任务书 计算机科学与工程学院信息安全教研室 2014年 12 月 18 日

目录 1.需求分析 (1) 2、总体设计 (1) 2.1 程序目录 (1) 2.2 算法流程 (3) 3、详细设计 (3) 3.1 界面设计 (3) 3.2 详细代码设计 (5) 3.3 调试分析 (10) 4、总结 (15) 参考文献 (16) 代码详述 (16)

1.需求分析 “数据结构”是计算机程序设计的重要理论技术基础,它不仅是计算机学科的核心,而且也成为其他理工类学科必修课程,所谓”数据结构”是相互之间存在一种或多种特定关系的数据元素的集合.数据元素之间的相互关系成为结构,结构一般有线性结构,树形结构,图状结构,本程序所做的就是树形结构的二叉树的遍历算法和线索化查找. 本程序使用VC6.0++编写,具体实现功能有二叉树的遍历,包括先序遍历,中序遍历,后序遍历的递归算法以及非递归算法.另外本程序还有可线索化二叉树的功能,由此可以得到二叉树某个节点的前驱和后继. 题目要求为: 1.实现二叉树的各种遍历。包括先序遍历、中序遍历、后序遍历的递归和非递归算法、以及层次遍历。 2.要求能查找任一结点在某种遍历序列中的前驱和后继。 3.界面友好,易于操作。可采用菜单或其它人机对话方式进行选择。 由小组一起制作,本人做小组汇总工作,并在基础上加了查找某个节点是否存在二叉树,以及求二叉树总节点数等一些简单功能 2、总体设计 2.1 程序目录 (1)typedef struct node 二叉树的定义,包含数据域data,左孩子lchild,右孩子rchild,若二叉树为空,则头结

数据结构课程设计二叉树遍历查找

课程设计任务书 2011 —2012 学年第一学期 电子与信息工程系计算机专业09计算机一班班级 课程设计名称:数据结构课程设计 设计题目:排序二叉树的遍历 完成期限:自2012 年 1 月 2 日至2012 年 1 月 6 日共 1 周 设计依据、要求及主要内容(可另加附页): 一、设计目的 熟悉各种数据结构和运算,会使用数据结构的基本操作解决一些实际问题。 二、设计要求 (1)重视课程设计环节,用严谨、科学和踏实的工作态度对待课程设计的每一项任务; (2)按照课程设计的题目要求,独立地完成各项任务,严禁抄袭;凡发现抄袭,抄袭者与被抄袭者皆以零分计入本课程设计成绩。凡发现实验报告或源程序雷同,涉及的全部人员皆以零分计入本课程设计成绩; (3)学生在接受设计任务后,首先要按设计任务书的要求编写设计进程表; (4)认真编写课程设计报告。 三、设计内容 排序二叉树的遍历(用递归或非递归的方法都可以) 1)问题描述 输入树的各个结点,建立排序二叉树,对建立的排序二叉树进行层次、先序、中序和后序遍历并统计该二叉树中叶子结点的数目。 2)基本要求 (1)用菜单实现 (2)能够输入树的各个结点,并能够输出用不同方法遍历的遍历序列和叶子结点的数目。 四、参考文献

1.王红梅.数据结构.清华大学出版社 2.王红梅.数据结构学习辅导与实验指导.清华大学出版社3.严蔚敏,吴伟民.数据结构(C语言版).清华大学出版社 #include using namespace std; int num; //-----------排序二叉树节点--------------// struct tree //定义二叉树节点结构 { int data; //节点数据域 tree *right,*left; //右,左子树指针 }; //-----------排序二叉树类----------------// class Btree { tree *root;//根节点 public: Btree()

线索二叉树的应用

课程设计说明书 (数据结构课程设计) 专业:网络工程 课程名称: 数据结构课程设计班级: 网络B11-1 设计题目: 线索二叉树的应用 设计时间: 2013-2-25 至2013-3-8 评语:_________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ 评阅成绩:____评阅教师:__ 一、问题描述与需求分析 1、问题描述 本实验的问题是建立一个线索二叉树,并实现线索二叉树的插

入、删除、恢复线索等功能。 2、功能需求分析 本程序要实现的功能是: 1. 线索二叉树的建立。 2.线索二叉树的插入。 3.线索二叉树的删除。 4.线索二叉树的恢复。 想要完成上面的功能,我们首先是要知道上面是线索二叉树。我们可以从数据结构的书上找到答案,利用二叉链表的空指针域将空的左孩子指针域改为指向其前驱,空的右孩子指针域改为指向其后继。这种改变指向的指针称为线索,加上了线索的二叉链表称为线索链表。 N个结点的二叉链表中含有n+1个空指针域。利用二叉链表中的空指针域,存放指向结点的在某种遍历次序下的前驱和后继结点的指针,这种加上了线索的二叉链表称为线索链表。相应的二叉树称为线线索二叉树。根据线索二叉树性质的不同,线索二叉树可以分为前序线索二叉树,中序线索二叉树和后续线索二叉树三种,此次课程设计中使用的是中序线索二叉树。 二、概要设计 1、总体设计思路 首先就是要建立一个二叉树,然后再对二叉树进行线索化。

二叉树数据结构课程设计

目录 第一章需求分析 (1) 1.1课程设计题目 (1) 1.2 课程设计任务及要求 (1) 1.21 课程设计目的 (1) 1.22设计要求 (1) 1.3课程设计思想 (2) 1.4软件运行环境及开发工具 (2) 第二章概要设计 (3) 2.1 数据结构 (3) 2.2 所用方法及其原理说明 (3) 第三章详细设计 (4) 3.1详细设计方案 (4) 3.2 模块设计 (4) 3.21二叉树定义 (4) 3.22 树状显示二叉树设计 (7) 3.22 主函数设计 (10) 第四章调试和操作说明 (11) 4.1 调试 (11) 4.2 操作说明 (12) 第五章总结与体会 (12) 5.1本文的主要工作 (12) 5.2 存在问题 (12) 5.3心得体会 (12) 致谢 (13) 参考文献 (14)

第一章需求分析 1.1课程设计题目 树状显示二叉树: 编写函数displaytree(二叉树的根指针,数据值宽度,屏幕的宽度)输出树的直观示意图。输出的二叉树是垂直打印的,同层的节点在同一行上。 [问题描述] 假设数据宽度datawidth=2,而屏幕宽度screenwidth为64=26,假设节点的输出位置用 (层号,须打印的空格数)来界定。 第0层:根在(0,32)处输出; 第1层:因为根节点缩进了32个空格,所以下一层的偏移量(offset)为32/2=16=screenwidth/22。即第一层的两个节点的位置为(1,32-offset),(1,32+offset)即(1,16),(1,48)。 第二层:第二层的偏移量offset为screenwidth/23。第二层的四个节点的位置分别是(2,16-offset),(2,16+offset),(2,48-offset),(2,48+offset)即(2,8),(2,24),(2,40),(2,56)。 …… 第i层:第i层的偏移量offset为screenwidth/2i+1。第i层的每个节点的位置是访问第i-1层其双亲节点时确定的。假设其双亲的位置为(i-1,parentpos)。若其第i层的节点是其左孩子,那末左孩子的位置是(i,parentpos-offset),右孩子的位置是(i,parentpos+offset)。 [实现提示] 利用二叉树的层次遍历算法实现。利用两个队列Q,QI。队列Q中存放节点信息,队列QI中存相应于队列Q中的节点的位置信息,包括层号和需要打印节点值时需要打印的空格数。当节点被加入到Q时,相应的打印信息被存到QI中。二叉树本身采用二叉链表存储。 1.2 课程设计任务及要求 1.21 课程设计目的 据结构是计算机专业的核心课程,是一门实践性很强的课程。课程设计是加强学生实践能力的一个强有力手段,要求学生掌握数据结构的应用、算法的编写、类C语言的算法转换成C(C++)程序并上机调试的基本方法,还要求学生在完成程序设计的同时能够写出比较规范的设计报告。严格实施课程设计这一环节,对于学生基本程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用。 1.22设计要求 1、课程设计题目每组一题,每个学生必须独立完成; 2、课程设计时间为2周; 3、设计语言C(C++)不限; 1

数据结构课程设计_线索二叉树的生成及其遍历

数据结构课程设计 题目: 线索二叉树的生成及其遍历 学院: 班级: 学生姓名: 学生学号: 指导教师: 2012 年12月5日

课程设计任务书

摘要 针对以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。 关键词二叉树,中序线索二叉树,中序线索二叉树的遍历

目录 摘要 ............................................ 错误!未定义书签。第一章,需求分析................................. 错误!未定义书签。第二章,概要设计 (1) 第三章,详细设计 (2) 第四章,调试分析 (5) 第五章,用户使用说明 (5) 第六章,测试结果 (5) 第七章,绪论 (6) 第八章,附录参考文献 (7)

线索二叉树的生成及其遍历 第一章需求分析 以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。主要任务: 1.建立二叉树; 2.将二叉树进行中序线索化; 3.编写程序,运行并修改; 4.利用中序线索遍历二叉树 5.书写课程设计论文并将所编写的程序完善。 第二章概要设计 下面是建立中序二叉树的递归算法,其中pre为全局变量。 BiThrNodeType *pre; BiThrTree InOrderThr(BiThrTree T) { /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/ BiThrTree head; head=(BitThrNodeType *)malloc(sizeof(BiThrType));/*设申请头结点成功*/ head->ltag=0;head->rtag=1;/*建立头结点*/ head->rchild=head;/*右指针回指*/ if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/ else{head->lchild=T;pre=head; InThreading(T);/*中序遍历进行中序线索化*/ pre->rchild=head; pre->rtag=1;/*最后一个结点线索化*/ head->rchild=pre; }; return head; } void InThreading(BiThrTree p) {/*通过中序遍历进行中序线索化*/ if(p)

习题八 根及其应用 - 烟台大学计算机与控制工程学院

习题八: 根树及其应用 1.从简单有向图的邻接矩阵怎样去决定它是否为根树。如果是根树,怎样定出它的树根和树叶。 2.求出对应于图7-8.9所给出的树的二叉树。 3.证明在完全二叉树中,边的总数等于)1(2-t n ,式中t n 是树叶数。 4.在一棵t 叉树中,其外部通路长度与内部通路长度之间有什么关系。 5.给定权1,4,9,16,25,36,49,64,81,100 a )构造一棵最优二叉树。 b )构造一棵最优三叉树。 c )说明如何构造一棵最优t 叉树。 6.构造一个与英文字母e y o g d b ,,,,,对应的前缀码,并画出该前缀码对应的二叉树,再用此六个字母构成一个英文短语,写出此短语的编码信息。 7.设A 是二进制序列的集合。我们将A 划分为两个子集0A 和1A ,这里0A 是A 中第一个数字是0的序列的集合,1A 是A 中第一个数字是1的序列的集合,然后我们根据序列中的第二个数字将0A 划分成两个子集,对1A 也用同样方法加以划分。运用不断的将序列的集合划分成子集的方法来证明:如果A 是前缀码,则存在一棵二叉树,其中从每个分枝点射出的两条边分别标号0和1,使得赋于树叶的0和1的序列是A 中的序列。 8.给出公式())(())(R Q P Q P P ?∧∨?∧∧?∨的根树表示。 9.(1)求带权为1,1,2,3,3,4,5,6,7的最优三元树。 (2)求带权为1,1,2,3,3,4,5,6,7,8的最优三元树。 10.在通信中要传输八进制数字0,1,2,…,7。这些数字出现的频率为0:30%;1:20%; 2:15%;3:10%;4:10%;5:6%;6:5%;7:4%。 编一个最佳前缀码,使通信中出现的二进制数字尽可能地少。具体要求如下: (1) 画出相应的二元树。 (2) 写出每个数字对应的前缀码。 图7-8.9

数据结构课程设计-二叉树的基本操作

二叉树的基本操作 摘要: 本次课程设计通过对二叉树的一系列操作主要练习了二叉树的建立、四种遍历方式:先序遍历、中序遍历、后序遍历和层序遍历以及节点数和深度的统计等算法。增加了对二叉树这一数据结构的理解,掌握了使用c语言对二叉树进行一些基本的操作。 关键字:递归、二叉树、层序遍历、子树交换 一、程序简介 本程序名为“二叉树基本操作的实现”,其主要为练习二叉树的基本操作而开发,其中包含了建立、遍历、统计叶子结点和深度等一系列操作。其中定义二叉链表来表示二叉树,用一个字符类型的数据来表示每一个节点中存储的数据。由于没有进行图形界面的设计,用户可以通过程序中的遍历二叉树一功能来查看操作的二叉树。 二、功能模块 2.1功能模块图 2.2功能模块详解 2.2.1建立二叉树

输入要建立的二叉树的扩展二叉树的先序遍历序列,来建立二叉树,建立成功会给出提示。 2.2.2遍历二叉树 执行操作之后会有四个选项可供选择:先序遍历、中序遍历、后序遍历、层序遍历。 输入对应的序号即可调动相关函数输出相应的遍历序列。 2.2.3统计叶子节点树 执行之后输出叶子结点的个数。 2.2.4求二叉树深度 执行之后输出二叉树的深度。 2.2.5子树交换 交换成功则会给出提示,用户可通过遍历二叉树来观察子树交换之后的二叉树。 三、数据结构和算法设计 3.1二叉链表的设计 1.typedef struct BiNode { 2.char data; 3.struct BiNode* lchild; //左孩子 4.struct BiNode* rchild; //右孩子 5.}BiTree; 用一个字符型保存节点数据,分别定义两个struct BiNode类型的指针来指向左孩子和右孩子。在BiTree.h中实现相关的功能。 3.2队列的实现 1.typedef struct { 2. ElemType* data; 3.int head;//队头指针 4.int tail;//队尾指针 5.} SqQueue; 队列主要用于二叉树遍历过程中的层序遍历,从根节点开始分别将左右孩子放入队列,然后从对头开始输出。队列的相关操作封装在SqQueue.h中,包括入队、出队、判断队列是否为空等操作。

数据结构课程设计实验报告

数据结构课程设计实验报告

设计题目:一 单位员工通讯录管理系统 一、题目要求 为某个单位建立一个员工通讯录管理系统,可以方便查询每一个员工的办公室电话、手机号、及电子邮箱。其功能包括通讯录链表的建立、员工通讯信息的查询、修改、插入与删除、以及整个通讯录表的输出。 二、概要设计 本程序通过建立通讯录链表,对员工信息进行记录,并建立一个系统的联系。 三、主要代码及分析 这里面关于链表的主要的操作有插入,查询,删除。则这里只列出这几项的主代码。 1、通过建立通讯录结构体,对信息进行存储,建立链表,建立信息之间 的联系。 typedef struct { }DataType;结构体来存储通讯录中的基本信息 typedef struct node { DataType data; /*结点的数据域*/ struct node *next; /*结点的指针域*/ }ListNode,*LinkList; 2、信息插入操作,将信息查到链表的后面。 void ListInsert(LinkList list){ //信息插入 ListNode *w; w=list->next; while(w->next!=NULL) { w=w->next; } ListNode *u=new ListNode; u->next=NULL; cout<<"员工编号:";cin>>u->data.num; cout<<"员工姓名:";cin>>u->https://www.sodocs.net/doc/1613962104.html,; cout<<"手机号码:";cin>>u->data.call; cout<<"员工邮箱:";cin>>u->data.email; cout<<"办公室电话号码:";cin>>u->data.phone; w->next=u;w=w->next; }

树状数组及其应用

树状数组及其应用 ( Binary Indexed Trees ) 一、什么是树状数组 【引例】 假设有一列数{A i}(1<=i<=n),支持如下两种操作: 1.将A k的值加D。(k,D是输入的数) 2.输出A s+A s+1+…+A t(s,t都是输入的数,s<=t) 分析一:线段树 建立一颗线段树(线段长度1~n)。一开始所有结点的count值等于0。 对于操作1,如果把A k的值加D,则把所有覆盖了A k的线段的count值加D。只有log2n 条线段会受到影响,因此时间复杂度是O(log2n)。 每条线段[x..y]的count值实际上就是A x+A x+1+…+A y的值。 对于操作2,实际上就是把[s..t]这条线段分解成为线段树中的结点线段,然后把所有的结点线段的count值相加。该操作(ADD操作)在上一讲线段树中已介绍。时间复杂度为O (log2n)。 分析二:树状数组 树状数组是一种特殊的数据结构,这种数据结构的时空复杂度和线段树相似,但是它的系数要小得多。 增加数组C,其中C[i]=a[i-2^k+1]+……+a[i](k为i在二进制形式下末尾0的个数)。由c数组的定义可以得出:

为了对树状数组有个形象的认识,我们先看下面这张图。 如图所示,红色矩形表示的数组C[]就是树状数组。我们也不难发现,这个k就是该节点在树中的高度,因而这个树的高度不会超过logn。 【操作1】修改A[i]的值。可以从C[i]往根节点一路上溯,调整这条路上的所有C[]即可,这个操作的复杂度在最坏情况下就是树的高度即O(logn)。 定理1:若a[k]所牵动的序列为C[p1],C[p2]……C[p m],则p1=k,而p i+1=p i+2li (l i为p i在二进制中末尾0的个数)。 例如a[1]……a[8]中,a[3] 添加x; p1=k=3 p2=3+20=4 p3=4+22=8 p4=8+23=16>8 由此得出,c[3]、c[4]、c[8]亦应该添加x。 定理的证明如下: 【引理】 若a[k]所牵动的序列为C[p1],C[p2] ……C[p m],且p1

数据结构课程设计

《数据结构》 课程设计报告 学号 姓名 班级 指导教师 安徽工业大学计算机学院 2010年6月

建立二叉树和线索二叉树 1.问题描述: 分别用以下方法建立二叉树并用图形显示出来: 1)用先序遍历的输入序列 2)用层次遍历的输入序列 3)用先序和中序遍历的结果 2.设计思路: 分三个方式去实现这个程序的功能,第一个实现先序遍历的输入数列建立二叉树;第二个是用层次遍历的方法输入序列;第三个是用先序和后序遍历的结果来建立二叉树;三种方法建立二叉树后都进行输出。关键是将这三个实现功能的函数写出来就行了;最后对所建立的二叉树进行中序线索化,并对此线索树进行中序遍历(不使用栈)。 3.数据结构设计: 该程序的主要目的就是建立二叉树和线索二叉树,所以采用树的存储方式更能完成这个程序; 结点的结构如下: typedef struct bnode { DataType data; int ltag,rtag; struct bnode *lchild, *rchild; } Bnode, *BTree; 4.功能函数设计: BTree CreateBinTree() 用先序遍历的方法讲二叉树建立; BTree CREATREE() 用队列实现层次二叉树的创建; void CreatBT(); 用先序和中序遍历的结果建立二叉树; void InThread(BTree t,BTree pre) 中序线索化; 5.编码实现: #include #include #define max 100 typedef struct bnode { char data; int ltag,rtag; struct bnode *lchild,*rchild; }Bnode,*BTree; BTree Q[max]; BTree CREATREE() { char ch; int front=1,rear=0;

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

数据结构课程设计报告之线索二叉树

线索二叉树 一目的 程序从文件中读取每个结点的信息,然后建立一个二叉树。通过菜单的形式,选择不同的线索化方式,然后再对线索化的二叉树经行遍历并输出对应的结果。 二需求分析 1、文件的读入 程序首先要从一个文件中读入结点的信息。故需建立一个文件,在文件中,给出每个结点的信息。 2、菜单的实现 由于需要建立两种不同的线索二叉树,故需要一个菜单,来选择需要进行的操作,并输出操作的结果。 3、树的建立 从文件中,读入每个结点的信息。然后建立起树,然后再对已建立的树进行相应的线索化。 4、树的线索化 根据菜单的选择,对已建立的树经行相对应的线索化。 5、输出遍历的结果 对每种不同的线索化的的树,给出相对应的算法。然后,根据算法把每种遍历的结果输出。 三概要设计 1、主程序模块 (1)主程序模块 int main() { welcome(); //通过welcome()模块来让用户控制,做线索化的工作。 return 0; }

(2)可线索化单元模块—实现各种线索化的抽象数据类型;通过welcome()模块来调用每个线索化模块。 2、建立二叉树的模块 bool CreatBinTree(); 函数会根据用户输入的文件名,打开一个存储了树中每个结点的文件,且是用广义表的形式给出结点信息的文件。 操作结果:根据文件中广义表的形式,建立相对应的二叉树,该树的根节点为root。 3、线索化的抽象数据类型 void CreatInThread(); void CreatInThread(Node *current,Node *&front) current是中序遍历下,当前遍历的结点的指针。front是中序遍历下,current结点的前驱的指针。 操作结果:对建立的二叉树完成中序线索化。 void CreatPostThread(); void CreatPostThread(Node *current,Node *&front) current是后续遍历下,当前遍历的结点的指针。front是后续遍历下,current结点的前驱的指针。 操作结果:对已建立的二叉树完成后续线索化。 4、输出结果的抽象数据类型 void InOrder() 操作结果:输出中序线索二叉树的中序遍历的结果。 Node* InFirst(Node *current) current是中序线索二叉树中指向一个结点的指针。 操作结果:返回以current为根的树的中序遍历下的第一个结点的指针。 Node* InNext(Node *current) current是中序线索二叉树中指向一个结点的指针。 操作结果:返回中序遍历下,current结点的后继结点的指针。 void PostOrder() 操作结果:输出后续线索二叉树的后续遍历结果。

实验4树图及其应用

实验4 树、图及其应用 ————二叉树的遍历 一、任务和目的 具体任务,达到的目的。 设计一个程序演示在二叉树上进行三种遍历的过程。 【基本要求】 (1)从键盘上输入二叉树的每一个结点,演示二叉树T的建立过程。 (2)演示各种遍历的遍历过程。 二、概要设计 主要数据结构定义,函数功能及各参数用途。 #include #include #include #include struct bitnode { char data; struct bitnode *lchild, *rchild; }bitnode;//树叶结构体定义 void createbitree(struct bitnode ** t);//建立二叉树(用前序法) void visit(struct bitnode *e);//输出结点 void preordertraverse(struct bitnode *t);//前序遍历 void choose_menu();//选择菜单 void inordertraverse(struct bitnode *t);//中序遍历 void postordertraverse(struct bitnode *t);//后序遍历 三、详细设计 各函数具体实现。 //建立二叉树(用前序法) void createbitree(struct bitnode ** t) { char x; struct bitnode *q; printf("\n 请输入数据"); x=getchar(); if(x!='#') getchar(); if (x=='#') { getchar(); printf(" 该节点为空\n"); return;

二叉树遍历课程设计】汇编

数据结构程序设计报告 学院: 班级: 学号: 姓名:

实验名称:二叉树的建立与遍历 一、实验目的: 1.掌握二叉树的二叉链表存储结构; 2.掌握二叉树创建方法; 3.掌握二叉树的先序、中序、后序的递归实现方法。 二、实验内容和要求: 创建二叉树,分别对该二叉树进行先序、中序、后序遍历,并输出遍历结果。 三、叉树的建立与遍历代码如下: #include #include struct tnode//结点结构体 { char data; struct tnode *lchild,*rchild; }; typedef struct tnode TNODE; TNODE *creat(void) { TNODE *root,*p; TNODE *queue[50];

int front=0,rear=-1,counter=0;//初始队列中需要的变量front、rear和计数器counter char ch; printf("建立二叉树,请输入结点:(#表示虚节点,!表示结束)\n"); ch=getchar(); while(ch!='!') { if(ch!='#') { p=(TNODE *)malloc(sizeof(TNODE)); p->data=ch; p->lchild=NULL; p->rchild=NULL; rear++; queue[rear]=p;//把非#的元素入队 if(rear==0)//如果是第一个元素,则作为根节点 { root=p; counter++; } else { if(counter%2==1)//奇数时与其双亲的左子树连接 { queue[front]->lchild=p; } if(counter%2==0)//偶数时与其双亲的右子树连接 { queue[front]->rchild=p;

相关主题