搜档网
当前位置:搜档网 › HXD3D型交流传动快速客运电力机车转向架-论文

HXD3D型交流传动快速客运电力机车转向架-论文

HXD3D型交流传动快速客运电力机车转向架-论文
HXD3D型交流传动快速客运电力机车转向架-论文

交流传动与直流传动的比较

《电力牵引交流传动及其控制系统》报告——交流传动与直流传动优劣的比较

1.电力传动的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。

2.交流传动与直流传动的比较 2.1 机车工作原理的比较 2.1.1 直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速和控制的机车。一般工矿用4轴电力机车串并联切换加凸轮变阻的电传动装置工作过程为:机车由受电弓从接触网取得直流电,经断路器QF,启动电阻R,向4台直流牵引电动机M1-M4供电,牵引电流经钢轨流回变电所。随着4台牵引电动机接通电源即行旋转,电能转变为机械能,分别通过各自的齿轮传动装置,驱动机车动轮实现牵引运行。 交直型整流器电力机车的能量传递是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流装置将交流转换为直流,然后向直流(脉流)牵引电动机供电,从而产生牵引力牵引列车运行。如图所示。

交流传动机车系统分析

毕业设计任务书 一、课题名称: 电力机车交流传动系统分析 二、指导老师: 三、设计内容与要求: 1、课题概述: 早期电力机车常采用直流电机来实现牵引系统,随着电力电子技术的进步,VVVF逆变器控制的异步电机牵引系统得到了广泛的应用,替代了直流电机牵引系统。采用交流传动技术的电力机车具有性能好、可靠性高、驱动功率大、维护工作量小等直流传动无法比拟的优越性。因此,电力牵引交流传动已经取代了直流电机牵引系统,成为轨道交通实现高速和重载的唯一选择和发展方向。 本课题主要分析电力机车交流传动系统的组成结构和常见的主电路拓扑结构,交流传动系统各主要部件的功能和原理,以及各种交流传动控制技术的对比分析。 2、设计内容与要求: 1)设计内容 a)电力机车交流传动系统的发展现状分析 b)电力机车交流传动系统组成和各种主电路拓扑结构分析 c)电力机车交流传动系统各主要部件功能和原理分析 d)各种交流传动控制技术的对比和分析 e)结论 2)要求 a)通过检索文献或其他方式,深入了解设计内容所需要的各种信息; b)能够灵活运用《电力电子技术》、《交流调速技术》、《电力机车总体》 等基础和专业课程的知识来分析电力机车交流传动系统。 c)要求学生有一定的电力电子,轨道交通专业基础。 四、设计参考书 1、《现代变流技术与电气传动》 2、《HXD1型电力机车》

3、《HXD2型电力机车》 4、《HXD3型电力机车》 5、《电力牵引交流传动与控制》 五、设计说明书内容 1、封面 2、目录 3、内容摘要(200-400字左右,中英文) 4、引言 5、正文(设计方案比较与选择,设计方案原理、分析、论证,设计结果的说 明及特点) 6、结束语 7、附录(参考文献、图纸、材料清单等) 六、设计进程安排 第1周:资料准备与借阅,了解课题思路。 第2-3周: 设计要求说明及课题内容辅导。 第4-7周:进行毕业设计,完成初稿。 第7-10周:第一次检查,了解设计完成情况。 第11周:第二次检查设计完成情况,并作好毕业答辩准备。 第12周:毕业答辩与综合成绩评定。 七、毕业设计答辩及论文要求 1、毕业设计答辩要求 1)答辩前三天,每个学生应按时将毕业设计说明书或毕业论文、专题报 告等必要资料交指导教师审阅,由指导教师写出审阅意见。 2)学生答辩时,自述部分内容包括课题的任务、目的和意义,所采用的 原始资料或参考文献、设计的基本内容和主要方法、成果结论和评价。 3)答辩小组质询课题的关键问题,质询与课题密切相关的基本理论、知 识、设计方法、实验方法、测试方法,鉴别学生独立工作能力、创新 能力。 2、毕业设计论文要求 文字要求:说明书要求打印(除图纸外),不能手写。文字通顺,语言流畅,排版合理,无错别字,不允许抄袭。 3、图纸要求: 按工程制图标准制图,图面整洁,布局合理,线条粗细均匀,圆弧连接

机车交流传动技术

机车交流传动技术 一、简要的历史回顾 人所共知,机车发展按其动力来分,最早出现的是蒸汽机车,以后由蒸汽机车发展到内燃机车和电力机车。在电传动内燃机车和电力机车中,开始是直-直传动,尔后是交-直传动,70年代以后又出现要交-直-交传动,即所谓的交流传动。这种传动型式被认为是现代机车的标志,日益风靡世界。这样的发展道路是由客观规律所决定的,是历史发展的必然,是机车由低级向高级逐渐演变的必然结果。每种机车的出现和存在都是与当时的技术发展相适应的。比如随着大功率硅整流技术的出现,直-直传动很必然地被更优越的交-直传动所取代。同样,随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,交直传动很自然地被交-直-交传动所取代。 二、交流传动技术的特点和优点 人们很早地认识到交流传动的优越性。交流传动技术是一门综合技术,但其本质的特点是牵引电动机采用了交流异步电动机,其一系列的优点都是由此而表现出来的。交流传动机车所以成为现代机车发展的方向,正是由异步电动机的特点和优点所决定的。和传统的串激直流电动机驱动系统相比,交流异步电动机驱动系统的优越之处表现在机械、绝缘、耐热、耐潮、粘着、维修、效率、重量尺寸等诸多方面。 1、构造简单 异步电动机是所有电机中结构最简单的电动机,除轴承外,没有其他机械接触部分。串激直流电动机则不然,结构复杂。定子、转子都有绝缘要求很高的绕组,有换向器装置和电刷机构,磨擦部分多,接线复杂,机械转速受换向条件和机械强度的限制,只能达到2500r/min左右。而交流异步电动机转速可达4000r/min 以上,试验转速甚至可达6000r/min,这是直流电机所忘尘莫急的。 2、粘着性能好 (1)异步电动机有很硬的机械特性,所以当某电机发生空转时,随着转速的升高,转矩很快降低,具有很强的恢复粘着的能力。空转发生时,转速上升值不大,即使是同步转速,与原工作点的转速差不会超出5%以上。串激电动机则不然,转矩变化一点,转速就有很大的变化。 (2)异步电动机的工作点可以很方便地进行平滑调节,以实现最大可能的粘着利用,不会出现粘着中断情况。根据检测有关粘着控制的信号,准确、迅速地改变逆变器输出的电压和频率,寻求最佳工作点,使驱动系统既不能发生空转,又能充分发挥最大的牵引力。 (3)可实现各轴单独控制。当某台电机发生空转时,可调节该台电机,这样能充分利用机车的粘着性能。在交—直传动系统中,某轴空转时,需要使所有各轴电机卸载,这样就大大降低了机车的牵引能力。 由于上述特性和良好的控制功能,交—直流传动系统的粘着系数可以利用得很高。1992年美国铁路协会(AAR)在向四家机车制造厂提出的26台交流传动机车投标建议书中提出的粘着指标是:起动粘着系数45%,全天候牵引粘着系数是32%(GE公司在交—直传动机车上,采用“SENTRY”粘着控制装置后,全天候粘着系数是0.25~0.30)。如此之高的粘着利用,正是针对交流机传动机车所具有的良好的粘着控制而提出的,这对于交—直传动系统是不可想象的。德国四轴120型机车,可满足以往六轴机车的全部要求。 3、功率大,牵引力大 这个概念是指在其它条件大致相同的前提下,在机车结构所提供的空间条件下,可以装更大功率的异步电动机。如加拿大改造的CP4744号机车,在给定的设计空间条件下,直流电动机的功率大约被限制在600~700kW/轴。装用BBC6FRA40B异步牵引电动机,其功率可达1492kW/轴以上。正因如此,才可使机车的牵引功率大大提高。牵引功率大导致牵引力大,而又由于粘着性能好,大的牵引力能充分发挥其牵引能力。我们可以比较一下ND5型交直流传动机车和SD60MAC交流传动机车的牵引力情况:ND5机车的柴油机的标定功率为2940kW,起动牵引力为533.6kN,持续速度为22.2km/h时的持续牵引力为359.8kN;SD60MAC机车的柴油

交流电力传动技术的现状和发展概论

交流电力传动技术的现状和发展 内容摘要 为了资源能效并保护环境,实现高速和重载运输,促进国民经济的可持续发展,在轨道交通运输领域,具有优异运行性能和显著节能效果的电力牵引交流传动系统应用越来越普遍,而交流传动传动控制技术是高速和重载车辆必须的技术配置,是高速铁路和重载货运发展的基础,也已成为衡量一个国家铁路技术水平的重要标志。 本论文从电力牵引交流传动系统的基本结构出发,大致介绍了国内外交流电力传动技术的发展历程,详细分析了系统核心部件牵引变压器、变流器、牵引电动机以及对之进行控制的控制系统的的研究现状和发展历程,最后研究了我国的交流传动控制技术发展及未来展望。 关键词:交流传动与控制结构与原理现状与发展 ABSTRACT In order to improve the efficiency of resource,protect the environment,realize the high-speed and heavy transportation,and promote the sustainable development of domestic economy,in the area of rail transportation,the electric traction AC drive system,which has excellent core component and eminent effect of energy-saving,is being increasingly prevalent applied in practical condition .Meanwhile,AC drive control technology,a imperative technology about high-speed and heavy transportation and a fundamental of high-speed train and heavy freight transportation,becomes a significant sign to judge a country’s ability of transportation. This essay is base on the basic structure of electric traction AC drive system,and,roughly,introduces the development about electric traction AC drive system all over the world . also,it explicitly analyses the core components,including transformer, converter, and traction motor,and the related current research and development about its control system. At last,it discusses the development and prospect about AC drive control technology in our country. KEY WORDS: AC drive and control structure and principle current status and development 目录

02 HXD1B型大功率交流传动电力机车总体说明书

中国南车集团株洲电力机车有限公司 设计文件 HXD1B型大功率交流传动电力机车 总体说明书 更改单编号 版本0.1 编 制 日 期 审 核 日 期 批 准 日 期

大功率交流传动9600kW六轴货运电力机车总体说明书 1 概述 大功率交流传动HX D1B型六轴9600kW交流传动电力机车在引进、消化、吸收HX D1型机车基础上进行自主再创新的成果,该型机车研制时紧紧围绕机车九大关键技术和十项主要配套技术,遵循先进、成熟、经济、适用、可靠的技术原则,按照模块化、标准化、系列化的要求,优化设计和制造,研制的适应铁路运输需要的六轴交流传动7200kW干线电力机车。机车设计、制造和试验等采用的技术标准是IEC、UIC、EN、DIN、GB及TB等相关标准。该型机车设计使用寿命30年。机车主要特点是: 采用模块化、标准化、通用化设计,并充分考虑噪音、防火、安全及维护等设计要素。 主电路:机车设有2个水冷牵引变流器,每个变流器包含2个四象限整流器以及3个为相应3台牵引电动机供电的主逆变器和1个为辅助设备供电的辅助逆 变器。整流器和逆变器均采用 6.5kV/600A IGBT。逆变器电机控制上采用单轴 控制技术,粘着利用率高;轴牵引功率1600kW,电制动采用再生制动。 辅助电路:机车辅助采用主辅一体化设计,辅助逆变器供电(集成在主逆变器中),可实现在过分相时不间断供电。辅助变流器分别由恒频恒压变流器(CVCF)与变频变压变流器(VVVF)两个模块构成,实现100%故障冗余。辅机采用无级 闭环控制,效率高,节能降噪。 控制网络:机车采用SIBAS 32微机控制系统,实现网络化、模块化,使机车控制系统具有控制、诊断、监测、传输、显示和存储功能,控制网络应符合IEC 61375 的标准要求。机车内部的通讯通过MVB总线实现,机车间的通讯通过WTB总线 实现,通过WTB总线进行多机(最多三台)重联控制及显示功能,CCU采用双套 热备冗余,具有当代机车微机网络控制的先进性; 设备布置:机车总体结构为双司机室、机械间设备按斜对称原则布置、中间走廊、采用预布线和预布管设计。 通风方式:机车采用独立通风方式,具有先进的冬夏季转换功能,保证机车内部清洁的环境和良好的通风效果。 车体:车体采用整体承载结构型式,全部由钢板及钢板压型件组焊而成的全钢焊接结构,车体纵向压缩载荷取3000kN,纵向拉伸载荷取2500kN。以中央纵梁 作为主要传递牵引力的构件,具有高强度低重量的优点,适合重载牵引。

HXD3型大功率交流传动电力机车培训教材

第一章 机车总体 1. 概述 以在中国国内的主干线上进行大型货运为目的,设计并制造了HX D3型交流大功率电力机车。 此机车采用PWM矢量控制技术等最新技术的同时,尽量考虑对环境保护,减少维修工作量。另外,考虑能够在中国全境范围内运行为前提,在满足环境温度在-40℃ ~ +40℃,海拔高度在2500m以下的条件的同时,最大考虑到4组机车重联控制运行。 2. 机车主要特点 2.1 轴式为C 0-C ,电传动系统为交直交传动,采用IGBT水冷变流机组,1250kW大转矩 异步牵引电动机,具有起动(持续)牵引力大、恒功率速度范围宽、粘着性能好、功率因数高等特点。 2.2 辅助电气系统采用2组辅助变流器,能分别提供VVVF和CVCF三相辅助电源,对辅助机组进行分类供电。该系统冗余性强,一组辅助变流器故障后可以由另一组辅助变流器对全部辅助机组供电。 2.3 采用微机网络控制系统,实现了逻辑控制、自诊断功能,而且实现了机车的网络重联功能。 2.4 总体设计采用高度集成化、模块化的设计思路,电气屏柜和各种辅助机组分功能斜对称布置在中间走廊的两侧;采用了规范化司机室,有利于机车的安全运行。 2.5 采用带有中梁的、整体承载的框架式车体结构,有利于提高车体的强度和刚度。 2.6 转向架采用滚动抱轴承半悬挂结构,二系采用高圆螺旋弹簧;采用整体轴箱、推挽式低位牵引杆等技术。 2.7 采用下悬式安装方式的一体化多绕组(全去耦)变压器,具有高阻抗、重量轻等特点,并采用强迫导向油循环风冷技术。 2.8 采用独立通风冷却技术。牵引电机采用由顶盖百叶窗进风的独立通风冷却方式;主变流器水冷和主变压器油冷采用水、油复合式铝板冷却器,由车顶直接进风冷却;辅助变流器也采用车外进风冷却的方式;另外还考虑了司机室的换气和机械间的微正压。 2.9 采用了集成化气路的空气制动系统,具有空电制动功能。机械制动采用轮盘制动。 2.10 采用了新型的模式空气干燥器,有利于压缩空气的干燥,减少制动系统阀件的故障率。

交流传动与直流传动的比较

《电力牵引交流传动及其控制系统》报告 交流传动与直流传动优劣的比较

1.电力传动的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车,1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器(即普通晶闸管)的发明,标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世,使牵引动力电传动系统发生了根本性的技术变革,全球兴起了单相 工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。

2 .交流传动与直流传动的比较 2.1机车工作原理的比较 2.1.1直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电 力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速 和控制的机车。一般工矿用4轴电力机车串并联切换加凸轮变阻的电传动装置工作过程为:机车由受电弓从接触网取得直流电,经断路器QF启动电阻R,向4台直流牵引电动机M1-M4供电,牵引电流经钢轨流回变电所。随着4台牵引电动机接通电源即行旋转,电能转变为机械能,分别通过各自的齿轮传动装置,驱动机车动轮实现牵引运行。 交直型整流器电力机车的能量传递是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流装置将交流转换为直流,然后向直流(脉流)牵引电动机供电,从而产生牵引力牵引列车运行。如图所示

交流传动电力机车司机室设计规范-20110624

交流传动电力机车司机室设计规范 1范围 1.1本规范规定了交流传动电力机车司机室布置的简统化模式和原则,该设计规范以运装技验[2004]177号文批准的《机车、动车组司机室设计规范》为基础,根据交流传动机车的技术特点和近年来铁道部的各项新规定,结合近几年铁路牵引设备行业技术的发展,进行了相应的调整和更新。 1.2本规范仅适用于交流传动电力机车。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版适用于本规范。 UIC651 OR-2002机车、有轨电车、动车组、驱动拖车的司机室布置 GB/T 3317 电力机车通用技术条件 GB 5914.1 机车司机室了望条件 GB 5914.2 机车司机室前窗、侧窗和其他窗的配置 GB/T 6769 机车司机室布置规则 GB 6770 机车司机室特殊安全规则 GB 6771 电力机车防火和消防措施的规程 GB 10000 中国成年人人体尺寸 GJB 2873-1997 军事装备和设施的人机工程设计准则 TB/T 1736 内燃、电力机车车型及车号编制规则 TB/T 2868 机车、动车司机室布置规则 TB/T 2961 机车司机室座椅 3司机室 3.1概述 司机室的设计必须给司乘人员提供良好的人机界面、便利的操作空间、充分的瞭望条件。同时也应设置基本的辅助设施,为司乘人员提供安全、可靠、舒适的工作环境。室内设备的布置应符合人机工程原理且必须满足单司机操作的要求。每台机车具有两个相同操作功能的司机室,分别设在机车两端。 3.2司机室总体要求 a) 司机室设计必须符合该设计规范; b) 司机室布置必须保证当司机坐着和驾驶时应面向前方线路,且司机可以站立操作, 符合GB/T 6769中相关的要求; c) 司机室内实际有效空气容量不小于10m3,如果司机室有充足的通风或空气调节, 则此值可以适当降低。司机室空间的其他控制尺寸应符合GB/T 6769中第3.2.1

交流传动

一.概述: 随着现代电力电子器件、智能功率集成模块问世,控制理论及微电子技术的发展使异步电动机的调压变频调速得以顺利实现,从而使交流变频传动广泛应用于国民经济各部门,并正在逐步取代直流传动系统,同时随着大功率自关断器件的日趋完善和以微处理器件为核心的数字控制技术的发展更促进了交流变频传动系统在城市交通车辆中的应用。 二.变频传动技术在国外的应用情况 城市轨道机车在国外发展已有100多年的历史,随着现代技术的应用及发展,其电力传动系统有了很大的变化,其驱动与调速系统由最初的变阻调速发展到斩波器调速,进而发展到应用交流三相异步牵引电动机采用调压变频调速(VVVF)的传动技术。由于这种变频传动技术的优良性,因此目前世界上德、日等发达国家近来研制的地铁和轻轨车辆几乎全部采用交流电传动变频调速技术。而且随着能源、环保与人类的关系越来越密切,采用这种调速技术的机车将会被更广阔的市场及社会所接受。 例,根据有关资料记载的德国采用BR120型交流变频传动电力机车试验的结果表明这种性能的机车比直流传动车辆具有以下显著的优点: ①.在相同粘重时,牵引力提高30%; ②.功率因素高(COSφ可达到1),电网利用率提高30%; ③.由于它采用电力电子器件取代了有触点器件,维修费可降低50%; ④.无故障运行超过40万KM; ⑤.节能显著,采用GTO变频器的交流电传动装置比相同容量使用斩波调速的直流传动装置效率可提 高6~7%。据有关资料介绍,一辆5600KW的机车每小时可节电392度,若按年运行3000 小时,则每年节电可达117.6万度。其显著的节能效果,将会带来显著的社会经济效益。 目前国际上,在交流电传动车辆处于领先水平的日本和德国基本都是采用PWM(交-直-交)型GTO-VVV逆变器(简称GTO变频器)和异步牵引电动机配套组成变频传动系统。 日本在1990年后生产的GTO变频器容量就达到了4500V、3000A。日本于1991年11月统计公布的所有日本交流变频调速车的主要参数。其本上都是采用由日立、东芝、三菱电机、富士电机和东洋电公司制造的GTO变频器。东洋公司从1986年到1990年底止,就已为23种车型提供的GTO变频器。据有关资料介绍,1 9 9 4年日本生产的1 0 0 KW以下的中小功率变频器已达1 00万台。除日本外,欧美等发达国家目前已形成了较完整的变频器技术产业体系。 目前,世界上德、日等发达国家近年来新研制的地铁和轻轨列车,几乎全部采用交流变频传动技术;而三点式逆变器用于交流传动系统,在德国和日本则已有应用,在1993年德国就已经有成千台用此方案构成的IGBT三点式逆变器用于轻轨电车上。 三.变频传动技术在我国城市交通车辆上应用的特点及效益 1).交流变频调速传动的车辆的优点: 交流变频传动系统一般由三相交流异步电动机、变频器及其控制装置组成。它与直流传动系统相比其显著的优点如下: 异步电动机比直流电动机结构简单,没有换向器,运行可靠,重量轻,效率较高而且价格低廉。其机械特性较硬,具有优异的牵引性能。而用其控制电路比直流传动系统简单,维护十分容易。 2)目前,我国使用新型的变频节能无轨电车的节能情况: 如广州本田公司将200台变频电车取代152台电阻式控制的旧电车和48台斩波控制车。在实际的营运路线上,他们分别对各种电车进行了耗电量测定,他们测量的结果表明,新型车

交流传动的优越性及发展概况

一.交流传动的优越性 交流传动技术是一门综合技术,但其本质的特点是牵引电动机采用了交流异步电动机,其一系列的优点都是由此而表现出来的。交流传动机车所以成为现代机车发展的方向,正是由异步电动机的特点和优点所决定的。和传统的串激直流电动机驱动系统相比,交流异步电动机驱动系统的优越之处表现在机械、绝缘、耐热、耐潮、粘着、维修、效率、重量尺寸等诸多方面。 1.构造简单,转速高,可靠性高,维修简便 三相异步电动机结构中无换向器、无电刷装置;所以相同功率的电机,异步电动机的重量轻,体积小,可使机车转向架簧下部分重量相应减少,在机车通过曲线时,轮轨之间侧向压力也就相应减少,这对高速行车尤为重要;同时,由于电动机体积减少,便能选择更为合适的悬挂方式,从而简化了转向架结构;除轴承外无磨擦部件,密封性好,防潮、防尘、防雪性能好;全部电气部件均是绝缘的,且所用绝缘材料均为H级或F级,绝缘性能好,耐热性能好。因此故障率低,可靠性高。控制装置是模块结构,故障率也很低,驱动系统的全部运行过程和控制过程均由无触点电子元件完成,所以不存在传统系统中经常发生的触点磨损、粘连、接触不良、机械卡滞等问题。据美国伯灵顿北方铁路介绍,该公司直流电动机的大修期一般在4 万公里至48万公里之间,而交流牵引电动机的大修期可高达120~160万公里。另外,交流传动机车有完备的微机监视系统和故障诊断系统,可随时监视系统的技术状态,进行故障诊断。由此可知交流传动系统的可靠性是很高的,维修量很小,且检修简便,维修费用大大降低。加拿大CP4744型交流传动机车的应用实践表明:不仅延长了计划修间隔,而且减少了计划外修理次数,每台机车每年可减少计划外修6次。 2,功率大,牵引力大,机车可以发挥较高的输出功率 异步牵引电动机不存在换向的问题,所以高速行车时电的效率也就较高;同时,牵引电动机因无换向器,空间利用好,使机车功率得以进一步提高,再生制动时亦能输出较大的电功率。而串激直流电动机结构复杂。定子、转子都有绝缘要求很高的绕组,有换向器装置和电刷机构,磨擦部分多,接线复杂,机械转速受换向条件和机械强度的限制,只能达到2500r/min左右。而交流异步电动机转速可达4000r/min以上,试验转速甚至可达6000r/min,这是直流电机所忘尘莫急的。 3.粘着性能好 (1)异步电动机有很硬的机械特性,所以当某电机发生空转时,随着转速的升高,转矩很快降低,具有很强的恢复粘着的能力。空转发生时,转速上升值不大,即使是同步转速,与原工作点的转速差不会超出5%以上。串激电动机则不然,转矩变化一点,转速就有很大的变化。 (2)异步电动机的工作点可以很方便地进行平滑调节,以实现最大可能的粘着利用,不会出现粘着中断情况。根据检测有关粘着控制的信号,准确、迅速地改变逆变器输出的电压和频率,寻求最佳工作点,使驱动系统既不能发生空转,又能充分发挥最大的牵引力。 (3)可实现各轴单独控制。当某台电机发生空转时,可调节该台电机,这样能充分利用机车的粘着性能。在交—直传动系统中,某轴空转时,需要使所有各轴电机卸载,这样就大大降低了机车的牵引能力。 由于上述特性和良好的控制功能,交—直流传动系统的粘着系数可以利用得很高。1992年美国铁路协会(AAR)在向四家机车制造厂提出的26台交流传动机车投标建议书中提出的粘着指标是:起动粘着系数45%,全天候牵引粘着系数是32%。如此之高的粘着利用,正是得益于交流机传动机车良好的粘着控制性能,这对于交直传动系统是不可能达到的。 4.简化了机车主电路 异步电动机的正、反转及牵引、制动状态的转换,通过机车控制电路就能实现,不需要改变主线路,所以机车主线路中的两位置转换开关可省去,主电路变得十分简单,使整车的可靠性大大提高,降低了使用维修费用。 5.动力性能和制动性能较好

HD型电力机车牵引电传动系统分析完整版

H D型电力机车牵引电 传动系统分析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

毕业设计说明书课题名称:HXD1型电力机车牵引电传动系统分析 专业系轨道交通系 班级城轨091 学生姓名李耀双 指导老师邓木生 完成日期 2011年12月

2012届毕业设计任务书 一、课题名称:HXD1型电力机车牵引电传动系统分析 二、指导教师:邓木生 三、设计内容与要求 课题概述 HXD1型电力机车电传动系统是按AC25kV、50Hz牵引供电制式设计的,并能适应我国铁路接触网电压范围较宽的特点。两节车各自配备了独立的、相同的电传动系统,它们的网侧电路可通过车顶高压连接器相连,既可固定重联运用,也可解编后各自独立运用,同时还具有外重联功能。 每节机车有一套完整的网侧电路和电传动系统,每节车的电传动系统由一台拥有1个原边绕组、4个牵引绕组和2个二次谐振电抗器的主变压器,通过4个四象限整流器(4QC)向两个独立的中间直流回路充电。每台转向架上的2台三相异步电动机作为一组负载,由连接在中间直流回路上的1个脉宽调制逆变器供电。因为两路中间直流回路相互独立,所以整台机车的牵引力有75﹪的冗余,从而提高了机车的可利用率。中间直流回路还连接有二次谐振电路、过压保护电路和接地检测电路等。机车采用再生制动,再生制动时机车能量反馈回电网,达到节能的效果。四象限整流器和PWM逆变器采用水冷IGBT模块。

1.设计内容及要求 内容: 1)HXD1型电力机车介绍 2)牵引系统原理阐述分析 3)分析系统的原理得出是否有不足及相关单位的改进措施,自己的意见和看法。 要求: 1)通过检索文献或其他方式,深入了解设计内容所需要的各种信息 2) 按要求撰写毕业设计说明书 四、设计参考书 《HXD1型电力机车》中国铁道出版社主编张曙光《电力电子技术》高等教育出版社主编徐丽娟 五、设计说明书要求 1、封面 2、目录 3、内容摘要(200~400字左右,中英文) 4、引言

机车交流传动与直流传动的分析比较

班级机车车辆 0932班 学生姓名指导教师 设计(论文)题目机车交流传动与直流传动的分析比较 主要研究内容(1)从机车的传动形式了解交流传动的发展优势; (2)以HXD3型机车为例,深入分析交流传动的特点及电路结构,与SS4改机车做出对比分析。 (3)从传动主电路及相关保护、辅助电路等不同角度,探讨新技术在交流传动机车上的应用。 主要技术指标或研究目标 (1)比较分析交流电机与直流电机的区别及优缺点。 (2)针对机车变流器存在的区别,深入分析交流传动的优势及发展前景。 (3)围绕主电路的传动形式,对交流传动与直流传动进行深入分析并比较优缺点。 (4)初步掌握交流传动机车上新技术、新装备的使用。 基本要求 深入了解交流传动的使用为铁路机车带来的优势,初步掌握交流传动机车新技术的应用,进一步熟悉交流传动机车的基本原理及组成结构。 主要参考资料及文献 电力机车控制华平主编 机车新技术张中央,刘敏军 HXD3型电力机车张曙光

目录 1 电力传动形式的发展 (1) 2 交流传动与直流传动的比较 (1) 2.1 机车工作原理的比较 (1) 2.1.1 直流传动电力机车工作原理 (1) 2.1.2 交流传动电力机车工作原理 (3) 2.2 交流传动与交直流传动机车主电路的比较 (4) 2.2.1 HXD3型机车和SS4改机车主电路特点比较 (5) 2.2.2 HXD3型机车和SS4改机车变流装置比较 (7) 2.2.3 HXD3型机车和SS4改机车牵引电机比较 (8) 3 新技术在交流传动机车上的应用 (10) 4 总结 (11) 致谢 (15) 参考文献 (16)

1 电力传动形式的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。 2 交流传动与直流传动的比较 2.1 机车工作原理的比较 2.1.1 直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切

HXD1型神华八轴交流传动电力机车控制特性

1.1电流制: 25kV/50Hz 网压在17.5kV~31 kV 范围内,机车功率发挥情况见图1。 图1 网压-功率发挥曲线图 1.2轨距: 1435 mm 1.3轴式: 2 (B0-B0) 1.4机车整备重量: 2 x 100 1 3 + -% t 1.5轴荷重: 25 1 3 + -% t 1.5.1同一节B0-B0车,每根轴轴荷重和平均轴荷重之差,不大于该机车的平均轴荷重的 ±2% 1.5.2各个轮荷重不超过(各自轮对)平均轮荷重的(按照IEC61133标准)±4% 1.6尺寸限界 1.6.1机车受电弓完全降弓和后视镜完全收回时,在平直轨道上,机车外形尺寸应符合

GB146.1-83“标准轨距铁路机车车辆限界”的要求。 1.6.2车钩中心线距轨面高度为(新轮) 880±10 mm 1.6.3受电弓降下时受电弓滑板距轨面高度大约为4690 mm (新轮) 1.6.4受电弓滑板距轨面工作高度5200 ~6500 mm 1.6.5齿轮箱底面距轨面高度不小于(在新轮条件下)120 mm 1.6.6机车排障器距轨面高度110 10 mm (在踏面允许磨耗范围内可调) 1.6.7转向架扫石器距轨面高度30 mm (在踏面允许磨耗范围内可调) 1.7机车主要尺寸: 1.7.1机车前后车钩中心距35304 mm 1.7.2机车车体宽度3100 mm 1.7.3机车车体宽度(扶手杆处)3248 mm 1.7.4机车车顶距轨面高度4003 mm 1.7.5机车转向架中心距(单节车) 9000 mm 1.7.6机车转向架固定轴距2800 mm 1.8主要技术参数: 1.8.1机车轮周牵引功率(持续制)9600 kW 1.8.2机车轮周电制动功率(持续制)9600 kW 1.8.3机车起动牵引力(0~5 km/h速度范围内半磨耗的轮周平均牵引力,干燥无油轨面) ≥760 kN 1.8.4机车速度 1.8.5持续速度65 km/h

相关主题