搜档网
当前位置:搜档网 › 纳米材料 论文资料-共8页

纳米材料 论文资料-共8页

纳米材料  论文资料-共8页
纳米材料  论文资料-共8页

TiO2纳米制备及其改性和应用研究进展

于琳枫(12化学1班)

摘要:二氧化钛纳米管由于新奇的物理化学性质引起了广泛的关注,本文就近年来在制备方法﹑反应机理﹑二级结构及掺杂和应用方面予以综述,并讨论了今后可能的研究发展方向。

关键词: 二氧化钛, 纳米管, 制备, 反应机理, 二级结构

0 引言

TiO2俗称钛白粉,无毒、无味、无刺激性、热稳定性好,且原料来源广泛易得.它有三种晶型:板钛矿、锐钛矿和金红石型。TiO2最早用来做涂料。

自从1991年Iijima发现碳纳米管以来,已经用碳纳米管模板合成出各种不同的氧化物纳米管,如SiO2,V2O5,Al2O3,MoO3等,二氧化钛由于其化学惰性,良好的生物兼容性,较强的氧化能力,以及抗化学腐蚀和光腐蚀的能力,价格低廉,在能量转换﹑废水处理﹑环境净化﹑传感器﹑涂料﹑化妆品﹑催化剂﹑填充剂等诸多领域引起了人们极大的关注。研究结果表明:TiO2的晶粒大小,形状,相组成或表面修饰以及其它成分的掺杂对其性质﹑功能有显著的影响,纳米管的比表面积大,因而具有较高的吸附能力,有良好的选择性,可望具有新奇的光电磁性质,具有很好的应用前景。本文对二氧化钛纳米管的制备,形成机理的最新进展进行综述,并对今后的发展方向予以展望。

1 TiO2纳米材料的制备

1.1 气相法

TiO2纳米材料的气相合成主要是在化学技术和物理技术上发展起来的。由于反应温度高。气相法具有成核速度快、产品结晶度高、纯度高、生成粒子团聚少、粒径易控制等优点。气相法可以合成各种形貌的TiO2薄膜或粉体:纳米棒、纳米管、纳米带等。最常使用的气相法是高温溅射沉积法(SPD).Ahonen等用钛醇盐做前驱体。采用SPD法合成了TiO2纳米粉体和薄膜。其他的气相制备技术

包括:直流电溅射法、高频无线电溅射法、分子束取向生长法和等离子体法等。

1.2 液相法

目前制备TiO2纳米材料应用最广泛的方法是各种前驱体的液相合成法。这种方法的优点是:原料来源广泛、成本较低、设备简单、便于大规模生产。但是产品粒子的均匀性差,在干燥和煅烧过程中易发生团聚.应用最普遍的液相制备方法包括液相沉积法和微乳液法等。

1.2.1 液相沉积法

液相沉积法是以无机钛盐作原料,通过直接沉积来制备功能TiO2粉体和薄膜的液相法。Deki等用(NH4)2TiF6和H3BO3的水溶液为起始溶液,制备了TiO2薄膜.Imai等用添加了尿素的TiF4和Ti(SO4)2的水溶液制备了不同形貌的TiO2纳米材料。液相沉积法具有以下优点:对仪器要求比较低,温度要求低(30~50℃),基片选择比较广等。

1.2.2 微乳液法

微乳液法制备纳米TiO2是近年来才发展起来的一种方法。微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物。该法的制备原理是在表面活性剂作用下使两种互不相溶的溶剂形成一个均匀的乳液。利用这两种微乳液间的反应可得到无定型的TiO2,经煅烧、晶化得到TiO2纳米晶体。贺进明等以TiCl4为原料、在十六烷基三甲基溴化铵、正己醇、水组成的微乳液体系中,在较低温度下,制备了球形、花状、捆绑丝和星形的金红石型TiO2纳米颗粒。微乳液法得到的粒子纯度高、粒度小而且分布均匀,但稳定微乳液的制备较困难。因此,此法的关键在于制备稳定的微乳液。

2 TiO2纳米材料的反应机理

2.1氧化钛纳米管形成的反应机理

目前,对二氧化钛纳米管的形成机理和组成尚存在分歧。一般认为,锐钛矿或者金红石相以及无定形二氧化钛在碱性条件下转换为纳米管都要经过单层的纳米片的卷曲,类似于多层碳纳米管形成的机理,即从1D到2D,再到3D的组合过程。Sugimoto等研究证实了层状的质子化的二氧化钛纳米片的存在,Sun 和Masaki各自报道了钛酸钾或者钛酸钠形成的纳米带。在碱性条件下,各种钛酸盐可以形成层状的结构,再通过折叠或卷曲形成纳米管,但折叠或卷曲的顺序

尚不确定。理论上钛纳米带折叠或卷曲形成纳米管时,可形成下列3种形状:(a)蛇形的,即单层纳米管的卷曲;(b)洋葱式的,即几个有弱相互作用的纳米片的卷曲;(c)同心式的,通过卷曲或者折叠成多层的纳米管。但实际上,(c)种形状在合成时很难出现。Yao和Ma通过TEM研究分别证实了(a)和(b)构型钛纳米管的存在。

梁建等则认为钛纳米管的生长机理符合3-2-1D的生长模型,在水热合成的过程中,在高压高温和强碱作用下,二氧化钛块体沿着(110)晶面被剥落成碎片,在片的两面有不饱和悬挂键,随着反应的进行,不饱和悬挂键增多,使薄片的表面活性增强,开始卷曲成管状,以减少体系的能量,这一点从反应中间产物中观察到大量的片状及卷曲态得的到证明。Dimitry V. Bavykin[19]等系统地研究了合成温度以及TiO2/NaOH mol 比对制备二氧化钛纳米管形貌的影响.认为图3-b 符合氧化钛纳米管的形成机理,并给出了形成机理的原始驱动力的解释。Dimitry V. Bavykin等进行了氧化钛纳米管形成的热力学和动力学研究。该模型见图4 能够很好的解释实验中增加TiO2/NaOH的摩尔比,氧化钛纳米管的平均管径也增大。同时也可以解释反应温度增加有利于纳米管的平均管径增大。

2.2 纳米管的热稳定性及氧化钛纳米管的晶型

由于二氧化钛纳米管为无定形结构,在热力学上,属于介稳态。因此研究温度对其热稳定性的影响颇有必要。王保玉等以TiO2为原料制备成TiO2纳米管,通过不同温度焙烧得到不同的样品,用TEM,XRD,FT-IR,BET等手段详细的研究了温度对晶型,比表面积的影响。研究表明,在300 ℃和400 ℃焙烧存在着两次比表面积的突降,用化学法合成的纳米管在400 ℃时,比表面积降到很小,管的结构严重被破坏。用化学法合成的纳米管是无定形的,而模板法制备的纳米管为锐钛矿型的。这可能是因为化学法制备的纳米管为多层,层与层之间不能形成三维空间的点阵结构。而王芹等研究则发现钛纳米管经过400 ℃热处理后能保持其纳米管的形貌,600 ℃有纳米管间烧结的现象,800 ℃时管的形状完全被破坏。可见合成方法的不同,氧化钛纳米管的热稳定性也有很大的差异。

Graham Armstrong等用水热法合成的氧化钛纳米管晶型为TiO2-B,具有竹子状的二氧化钛,是以TiO6八面体为基础通过共用边和共顶点形成的多晶,不同于锐钛矿相,金红石相和板钛矿相,密度比上述三种晶型都稍低。但XRD的

结果表明,TiO2-B的结构中仍还有痕量的锐钛矿相。梁建等用水热法合成,控制温度130 ℃,晶化时间2~3天,成功制备了多层的锐钛矿和金红石混晶的TiO2纳米管。王保玉等研究发现,氧化钛纳米管为多层管,每个单层相当于一个氧化钛分子的厚度,层与层之间不在以化学键存在,Ti在纳米管中的配位和八面体结构未达到饱和,拉曼光谱表明,TiO2纳米管以无定型的形态存在。Tomoko Kasuga等用10 M NaOH溶液水热条件下110 ℃处理20小时,得到具有针状结构的纳米管,晶型为锐钛矿型。可见纳米管的晶型,随着水热处理的温度和时间变化而有所不同。

3 TiO2纳米材料的的二级结构

在水热处理的过程中,除了生成纳米管本身的一级结构外,还存在纳米管之间的聚集,因而产生了氧化钛纳米管的二级结构。Dimitry V. Bavykin等研究发现,纳米管的二级结构取决于前驱体二氧化钛的量和所用NaOH的体积,其比例越小,生成的氧化钛纳米管越倾向聚集成球状。这可能是由于在水热条件下生成纳米管的过程是一个比较缓慢的过程,影响因素较复杂造成的。

5 TiO2纳米材料的改性

TiO2纳米材料的很多应用都是和其光学性质紧密相连的。但是,TiO2的带隙在一定程度上限制了TiO2纳米材料的效率。金红石型TiO2的带隙是3.0eV,锐钛矿型是 3.2eV,只能吸收紫外光,而紫外光在太阳光中只占很小的一部分(<10%)。因而,改善TiO2纳米材料性能的一个目的就是将其光响应范围从紫外光区拓展到可见光区,从而增加光活性。目前经常采用的改性方法包括贵金属沉积、离子掺杂、染料敏化和半导体复合等方法。

5.1 贵金属沉积

半导体表面贵金属(包括Pt、Au、Pd、Rh、Ni、Cu和Ag)沉积可以通过浸渍还原、表面溅射等方法使贵金属形成原子簇沉积附着在TiO2表面.由于贵金属的费米能级比TiO2的更低,光激发电子能够从导带转移到沉积在TiO2表面的贵金属颗粒上,而光生价带空穴仍然在TiO2上.这些行为大大降低了电子和空穴再结合的可能性,从而改善其光活性.Anpo和Takeuchi制备了Pt沉积TiO2用于光催化分解水制氢实验,发现产氢效率得到了明显提高.Sakthivel等研究了用Pt、Au和Pt沉积TiO2做光催化剂时对酸性绿16的光致氧化作用,发现与未沉积贵金属的TiO2相比,光催化效率得到了不同程度的提高.

5.2 离子掺杂

TiO2半导体离子掺杂技术是用高温焙烧或辅助沉积等手段,通过反应将金属离子转入TiO2晶格结构之中。离子的掺杂可能在半导体晶格中引入缺陷位置和改变结晶度等。影响了电子和空穴的复合或改变了半导体的激发波长,从而改变TiO2的光活性。但是,只有一些特定的金属离子有利于提高光量子效率,其他金属离子的掺杂反而是有害的。Choi等系统地研究了21种金属离子掺杂对

TiO2光催化活性的影响,发现Fe、Mo、Ru、Os、Re、V和Rh离子掺杂可以把TiO2的光响应拓宽到可见光范围,其中Fe离子掺杂效果最好,而掺杂Co和Al 会降低其光催化活性。Wu等定性分析了过渡金属(Cr、Mn、Fe、Co、Ni和Cu)离子掺杂对TiO2的光催化活性的影响。Xu等比较了不同稀有金属(La、Ce、Er、Pr、Gd、Nd和Sm)离子掺杂对TiO2光催化活性的影响。

阴离子掺杂可以改善TiO2在可见光下的光催化活性、光化学活性和光电化学活性。在TiO2晶体中掺杂阴离子(N、F、C、S等)可以将光响应移动到可见光范围。不像金属阳离子,阴离子不大可能成为电子和空穴的再结合中心,因而能够更有效地加强光催化剂的催化活性。Asahi等测定了取代锐钛矿TiO2中O的C、N、F、P和S的掺杂比例。发现p态N和2p态O的混合能使价带边缘向上移动从而使得TiO2带隙变窄。尽管S掺杂同样能使TiO2带隙变窄,但是由于S 离子半径太大很难进入TiO2晶格。研究表明C和P掺杂由于掺杂太深不利于光生电荷载体传递到催化剂表面,所以对光催化活性的影响不是很有效。Ihara等将硫酸钛和氨水的水解产物在400℃的干燥空气中煅烧,得到了可见光激发的N 掺杂TiO2光催化剂。

5.3 染料敏化

有机染料被广泛地用作TiO2的光敏化剂来改善其光学性质。有机染料通常是具有低激发态的过渡金属化合物,像吡啶化合物、苯二甲蓝和金属卟啉等。Yang等用联吡啶、Carp等用苯二甲蓝染料作为感光剂敏化TiO2,发现这些染料可以改善光生电子空穴对的电荷分离,从而改善了催化剂的可见光吸收。

5.4 半导体复合

半导体复合是提高TiO2光效率的有效手段。通过半导体的复合可以提高系统的电荷分离效率,扩展其光谱响应范围.从本质上说,半导体复合可以看成是一种颗粒对另一种颗粒的修饰。Sukharev等将禁带宽度与TiO2相近的半导体ZnO与TiO2复合,因复合半导体的能带重叠使光谱响应得到发展。通过对ZnO/TiO2、TiO2/CdSe、TiO2/PbS、TiO2/WO3等体系的研究表明,复合半导体比单个半导体具有更高的光活性。GurunathanK等将CdS(带隙2.4eV)和SnO2(带隙3.5eV)复合在可见光下制氢得到了更高的产氢率。

6 总结与展望

针对TiO2纳米材料的性质、合成、改性和应用,人们已经做了广泛的研究。随着TiO2纳米材料的合成和改性方面的突破,其性能得到不断地改善,新应用也不断的被发现。但从目前的研究成果看,可见光催化或分解水效率还普遍很低。因此如何通过对纳米TiO2的改性,有效地利用太阳光中的可见光部分,降低TiO2光生电子空穴对的复合机率,提高其量子效率是今后的研究重点。

参考文献

[1] 梁建,马淑芳,韩培德等, 二氧化钛纳米管的合成及其表征,稀有金属材料与工程, 34(2): 287-290, 2019.

[2] 王保玉, 郭新勇, 张治军等, 热处理对TiO2纳米管结构相变的影响高等学校化学学报, 24: 1838-1841,2019.

[3] 王芹, 陶杰, 翁履谦等, 氧化钛纳米管的合成机理与表征, 材料开发与应用, 19: 9-12, 2019 .

[4] 张青红, 高濂, 郑珊等, 制备均一形貌的长二氧化钛纳米管, 化学学报, 60(8): 1439-1444, 2019. [4] 赖跃坤, 孙岚, 左娟等, 氧化钛纳米管阵列制备及形成机理, 物理化学学报, 20(9): 1063-1066, 2019.

[5] 王芹, 陶杰, 翁履谦等, 氧化钛纳米管的水热法合成机理研究, 南京航空航天大学学报, 37(1) : 130-134, 2019.

[6] 韩文涛, 马建华, 郝彦忠, 二氧化钛纳米管的研究进展,河北科技大学学报, 26(3): 199-202,2019.

[7]洪樟连.唐培松.周时凤.樊先平.王智宇.钱国栋.王民权水热法制备纳米TiO2的可见光波段光催化活性的溶剂效应[期刊论文]-稀有金属材料与工程2019(z1)

[8]张景臣纳米二氧化钛光催化剂[期刊论文]-合成技术及应用2019(3)

[9]蔡登科.张博.孟凡纳米TiO2在有机废水处理方面的研究进展[期刊论文]-电力环境保护2019(3)60.陈琦丽.唐超群.肖循.丁时锋二氧化钛纳米晶的制备及光催化活性研究[期刊论文]-材料科学与工程学报2019(4)

[10]江红.戴春爱纳米TiO2光催化降解技术在污水处理方面的研究进展[期刊论文]-北方交通大学学报2019(6)

[11]余灯华.廖世军TiO2结构对光催化性能的影响及其提高的途径[期刊论文]-环境污染治理技术与设备2019(2)

[12]张青红.高濂.孙静氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[期刊论文]-无机材料学报2019(3)

[13]梅燕.贾振斌.曹江林.韩梅娟.张艳峰.魏雨纳米TiO2粉体的固定及其对甲醇的光电复合氧化[期刊论文]-太阳能学报2019(2)

[14]孙晓君.井立强.蔡伟民.周德瑞.徐朝鹏.李晓倩用于可见光下Pt(Ⅳ)/TiO2光催化剂的制备和表征[期刊论文]-硅酸盐学报2019(6)

[15]李汝雄.孙海影超细TiO2的合成及其光催化分解水中有机物的研究[期刊论文]-北京石油化工学院学报2019(2)

[16]邓晓燕.崔作林.杜芳林.彭春纳米二氧化钛的热分析表征[期刊论文]-无机材料学报2019(6)73.余润兰.邝代治.邓戊有.王建伟纳米催化研究进展[期刊论文]-衡阳师范学院学报2019(6)

[17]井立强.孙晓君.郑大方.徐跃.李万程.蔡伟民ZnO超微粒子的量子尺寸效应和光催化性能[期刊论文]-哈尔滨工业大学学报2019(3)

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

毕业论文-毕业设计选题列表1

毕业设计课程设计类: 1、泵体无夹具工艺设计论文 2、连接座课程设计 设计类: 1、斗式提升机的设计 2、建筑卷扬机的设计 3、船用挖掘机起升机构的设计 4、15KN船用柴油机绞车的设计 5、3T悬臂起重机的设计 6、平面转弯带式输送机的设计 7、12T桥式起重机起升机构的设计 8、8T桥式起重机主起升机构的设计 9、SGB-620-40T型刮板输送机的设计 10、钢筋弯曲机的设计 11、单轨抓斗起重机设计 12、5T电动单梁桥式起重机的设计 13、矿用提升机构的设计 14、胶带式输送机的设计 15、数控龙门三枪H型钢自动火焰切割机 16、双梁起重机毕业设计

17、螺旋输送机的设计 18、船用锚机的设计(起重) 19、船用柴油机绞车的设计 20、机械手设计 21、电动(液压)锚机的设计(起重) 22、12.5T单卷筒绞缆车设计(起重) 23、柴油机绞车的设计(起重) 24、-WY型滚动轴承压装机设计 25、带式输送机 26、设计-“包装机对切部件”设计 27、数控回转工作台 28、无摩擦球阀设计 29、旋风除尘器设计 30、液压控制阀的理论研究与设计 31、起毛机主传动结构设计 32、球面蜗杆加工专用数控机床进给系统设计 33、发动机余热发电系统设计 34、射流抛光实验装置中抛光槽系统的研制 35、基于MATLAB的数字滤波器的设计. 36、减速机设计 39、1.8T慢速卷扬机设计 40、愕式破碎机

PLC设计: 1、自动装卸料气动机械手PLC控制设计 2、自动售货机的PLC系统设计 3、机械手控制PLC设计 4、机舱环境检测系统设计(单片机) 5、乘客电梯的PLC控制 6、电梯的PLC控制 7、卧式双面钻孔机床PLC 8、自动钻床与机械手的配合运用PLC控制设计 9、污水处理系统的PLC设计 10、单片机:加热炉温度控制系统的设计 11、基于UC3842开关电源的设计 12、PLC在X53K铣床改造中的应用 工艺夹具类: 1、中间泵壳工艺与两套工装夹具的设计 2、空气管工艺与两套工装夹具的设计 3、排气管工艺与两套工装夹具的设计 4、钻床立柱工艺与两套工装夹具的设计 5、涡轮箱工艺与两套工装夹具的设计 6、摇臂工艺与两套工装夹具的设计 7、前刹车调整臂外壳

学生选课系统毕业论文

淮海工学院东港学院 毕业设计(论文)说明书题目:学生选课系统 作者:贾娜学号:5102210107 系(院):东港学院计算机系 专业:计算机应用与维护 指导者:林毅 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2005年 6 月连云港

毕业设计(论文)中文摘要

目次 1引言(或绪论) ....................................... 错误!未定义书签。 1.1 课题研究的目的 ..................................... 错误!未定义书签。1.2 课题研究的意义 ................................... 错误!未定义书签。 1.3 课题的可行性分析 ................................... 错误!未定义书签。 1.3.1 课题调研?错误!未定义书签。 1.3.2 可行性分析 ....................................... 错误!未定义书签。 2 准备阶段 ............................................ 错误!未定义书签。 2.1 ASP基础........................................... 错误!未定义书签。2.2数据库系统设计 ................................... 错误!未定义书签。3应用系统开发工具 ................................... 错误!未定义书签。3.1对软件和硬件的要求 .............................. 错误!未定义书签。3.2 运行需求?错误!未定义书签。 3.3 其他需求 ........................................... 错误!未定义书签。 3.4 数据库应用系统开发简介7? 3.5 学生选课系统 (7) 3.6MSSQL Server 简介?错误!未定义书签。 4系统分析?错误!未定义书签。 4.1 系统简要分析 ..................................... 错误!未定义书签。4.2应用需求分析 .................................... 错误!未定义书签。4.3业务流分析 ...................................... 错误!未定义书签。4.4 数据流分析 ..................................... 错误!未定义书签。 4.5 系统数据模型设计?错误!未定义书签。 4.5.1 E-R图?错误!未定义书签。 4.5.2 数据表 ......................................... 错误!未定义书签。 5 操作方法 ............................................. 错误!未定义书签。5.1 登录 ............................................. 错误!未定义书签。5.2 课程预览?错误!未定义书签。 5.3 选课?错误!未定义书签。 5.4 退课?错误!未定义书签。 5.5 密码修改 ........................................ 错误!未定义书签。5.6管理员登录?错误!未定义书签。 5.7 退出系统 ........................................ 错误!未定义书签。 6 调和测试 ............................................ 错误!未定义书签。

纳米材料论文汇总

纳米材料技术介绍 专业:机械设计制造及其自动化 学生姓名:胡宇杨 学号:1120101117 班级:D机制131

引言:纳米概念是1959年木,诺贝尔奖获得着理查德.费曼在一次讲演中提出的。他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。 其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。在这里就不一一介绍了。 1纳米材料的特性 纳米是一种度量单位,1 nm为百万分之一毫米,即l毫微米,也就是十亿分之一米,一个原子约为0 1 nm。纳米材料是一种全新的超微固体材料,它是由纳米微粒构成,其中纳米颗粒的尺寸为l~100 nm。纳米技术就是在100 nm以下的微小结构上对物质和材料进行研究处理,即用单个原子、分子制造物质的科学技术…。 纳米微粒是由数目较少的原子和分子组成的原子群或分子群,其占很大比例的表面原于是既无长程序又无短程序的非晶层:而在粒子内部,存在结晶完好的周期性排布的原子,不过其结构与晶体样品的完全长程序结构不同。正是纳米微粒的这种特殊结构,导致了纳米微粒奇异的表面效应、小尺寸效应、量子尺寸效应、量子隧道效应,并由此产生许多纳米材料与常规材料不同的物理、化学特性。 1.1表面与界面效应 纳米材料的表面效应口即纳米微粒表面原子与总原子数比随纳米微粒尺寸的减小而大幅度增加,粒子的表面能及表面张力也随之增加,从而引起纳米榻料性质的变化。例如,粒径为5 nm的SiC比表面积高达300 /12/g;而纳米氧化锡的表面积随粒径的变化更为显著,10 lltlfl时比表面积为90.3 m2/g,5 nm时比表面积增加到181 m2/g,而当粒径小于2 nm 时,比表面积猛增到450 m2/g。这样大的比表面积使处于表面的原子数大大增加.这些袭面原子所处的晶体场环境及结合能与内部原子有所不同,存在着大量的表而缺陷和许多悬挂键,具有高度的不饱和性质,因而使这些原子极易与其他原子相结合而稳定下来,具有很高的化学反应活性。

大学毕业设计---基于c语言的教务系统软件

河南理工大学 毕业设计(论文)任务书 专业班级学生姓名 一、题目 二、起止日期年月日至年月日 三、主要任务与要求 指导教师职称 学院领导签字(盖章) 年月日

河南理工大学 毕业设计(论文)评阅人评语 题目 评阅人职称 工作单位 年月日

河南理工大学 毕业设计(论文)评定书 题目 指导教师职称 年月日

河南理工大学 毕业设计(论文)答辩许可证 答辩前向毕业设计答辩委员会(小组)提交了如下资料: 1、设计(论文)说明共页 2、图纸共张 3、指导教师意见共页 4、评阅人意见共页 经审查,专业班同学所提交的毕业设计(论文),符合学校本科生毕业设计(论文)的相关规定,达到毕业设计(论文)任务书的要求,根据学校教学管理的有关规定,同意参加毕业设计(论文)答辩。 指导教师签字(盖章) 年月日 根据审查,准予参加答辩。 答辩委员会主席(组长)签字(盖章) 年月日

河南理工大学 毕业设计(论文)答辩委员会(小组)决议 学院专业班 同学的毕业设计(论文)于年月日进行了答辩。 根据学生所提供的毕业设计(论文)材料、指导教师和评阅人意见以及在答辩过程中学生回答问题的情况,毕业设计(论文)答辩委员会(小组)做出如下决议。 一、毕业设计(论文)的总评语 二、毕业设计(论文)的总评成绩: 三、答辩组组长签名: 答辩组成员签名: 答辩委员会主席:签字(盖章) 年月日

基于c语言的教务系统软件设计 摘要 本系统依据开发要求主要应用于教育系统,完成对日常的教育工作中学生成绩档案的数字化管理。开发本系统可使学院教职员工减轻工作压力,比较系统地对教务、教学上的各项服务和信息进行管理,同时,可以减少劳动力的使用,加快查询速度、加强管理,以及国家各部门关于信息化的步伐,使各项管理更加规范化。 目前,学校工作繁杂、资料重多,虽然各类管理信息系统已进入高校,但还未普及,而对于学生成绩管理来说,目前还没有一套完整的、统一的系统。因此,开发一套适和大众的、兼容性好的系统是很有必要的。 本系统在开发过程中,注意使其符合操作的业务流程,并力求系统的全面性、通用性,使得本系统不只适用于一家教育机构。在开发方法的选择上,选择了生命周期法与原型法相结合的方法,遵循系统调查研究、系统分析、系统设计和系统实施四个主要阶段进行设计,而在具体的设计上,采取了演化式原型法,随着用户的使用及对系统了解的不断加深,对某一部分或几部分进行重新分析、设计、实施。本论文主要从系统分析、系统设计、系统实施与使用等几个方面进行介绍 【关键词】成绩管理成绩查询 C语言面向过程

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

本科生毕业论文(设计)规范

本科生毕业论文(设计)规范 一、基本规范 (一)毕业论文(设计)文本结构规范及装订顺序: 1.毕业论文(设计)任务书 2.毕业论文(设计)题目、摘要、关键词(中英文) 3.毕业论文(设计)目录 4.毕业论文(设计)正文(理工类): (1)选题背景; (2)方案论证; (3)过程(设计或实验)论述; (4)结果分析; (5)结论或总结。 注:文科及其他学科,可根据学科特点,参照上述结构制定统一的正文结构规范。 5.致谢 6.附录 7.参考文献 (二)内容要求 1.任务书、题目、摘要、关键词、目录等项内容由指导教师把关。 2.论文文本每页右下角必须有页码,目录中必须标明页码。 3.毕业论文(设计)正文: 正文内容层次结构序数为:一、二、三、……;(一)(二)(三)……;1.2.3.……;(1)(2)(3)……。 (1)选题背景:说明本设计课题的来源、目的、意义、应解决的主要问题及应达到的技术要求;简述本课题在国内外发展概况及存在的问题,本设计的指导思想。 (2)方案论证:说明设计原理并进行方案选择,阐明为什么要选择这个设计方案(包括各种方案的分析、比较)以及所采用方案的特点。 (3)过程(设计或实验)论述:指作者对自己研究工作的详细表述。要求

论理正确、论据确凿、逻辑性强、层次分明、表达确切。 (4)结果分析:对研究过程中所获得的主要数据、现象进行定性或定量分析,得出结论和推论。 (5)结论或总结:对整个研究工作进行归纳和综合,阐述本课题研究中尚存在的问题及进一步开展研究的见解和建议。 4.致谢:简述自己完成论文(设计)的体会,并对指导教师以及协助完成论文(设计)的有关人员表示谢意。 5.附录:包括与论文有关的图表、计算机程序、运行结果,主要设备、仪器仪表的性能指标和测试精度等。 6.参考文献:为了反映论文的科学依据和作者尊重他人研究成果的严肃态度以及向读者提出有关信息的出处,正文中应按顺序在引用参考文献处的文字右上角用[]标明,[]中序号应与“参考文献”中序号一致,正文之后则应刊出参考文献,并列出只限于作者亲自阅读过的发表在公开出版物上的最主要文献。 参考文献的著录,按著录/题名/出版事项顺序排列: 期刊——著者,题名,期刊名称,出版年,卷号(期号),起始页码。 书籍——著者,书名、版次(第一版不标注),出版地,出版者,出版年,起始页码。 7.文字要求:文字通顺,语言流畅,无错别字,采用计算机打印成文。 8.图纸要求:图面整洁,布局合理,线条粗细均匀,圆弧连接光滑,尺寸标注规范,文字注释必须使用工程字书写。提倡学生使用计算机绘图。 9.曲线图表要求:所有曲线、图表、线路图、流程图、程序框图、示意图等不准徒手画,必须按国家规定标准或工程要求采用计算机或手工绘制。 10.译文要求:内容必须与课题(或专业内容)有联系,并说明出处。 11.论文字数要求: 毕业论文(设计)字数文科0.8—1.2万(其中外语专业不少于3000个单词),理工科不少于1.5万字(含图表);外文翻译不少于1.5万印刷符号、外文参考资料阅读量不少于10万印刷符号。文科各专业的文献综述必须单独写,其字数应在2千汉字以上,要求与译文相同。 12.毕业论文(设计说明书)用A4开纸打印,并使用学校统一制作的封面

学生网上选课系统毕业设计论文

实训报告 课题名称:学生网上选课系统

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

半导体纳米材料论文fulltext2

BRIEF COMMUNICATION Preparation and photoelectric properties of mesoporous ZnO ?lms Ming Ming Wu ?Yue Shen ?Feng Gu ? Yi An Xie ?Jian Cheng Zhang ?Lin Jun Wang Received:24June 2009/Accepted:21October 2009/Published online:6November 2009óSpringer Science+Business Media,LLC 2009 Abstract Mesoporous ZnO ?lms doped with Ti 4?(M-ZnO)have been prepared by doping process and sol–gel method.The ?lms have mesoporous structures and consist of nano-crystalline phase,as evidenced from small angle X-ray diffraction and high resolution transmission electron microscopy.The wide angle X-ray diffraction of M-ZnO ?lms con?rms that M-ZnO has hexagonal wurtzite structure and ternary ZnTiO 3phases.Ultraviolet–visible transmittance spectra,absorbance spectra and energy gaps of the ?lms were measured.The Eg of M-ZnO is 3.25eV.Photoluminescence intensity of M-ZnO centered at 380nm increases obviously with the excitation power,which is due to the doping process and enhanced emission ef?ciency.M-ZnO thin ?lms display a positive photovoltaic effect compared to mesoporous TiO 2(M-TiO 2)?lms.Keywords Photoelectric properties áMesoporous áZnO áTiO 2 1Introduction It has been recently shown that semiconducting mesoporous metal oxides,e.g.,SnO 2[1,2]or TiO 2[3],with large speci?c surface areas and uniform pore widths show interesting properties which are superior to non porous samples of the same metal oxides.Zinc oxide (ZnO)is attracting tremendous research interest due to its vast spectrum properties and applications.ZnO is an n-type direct band-gap semiconductor with E g =3.37eV and an exciton-binding energy of 60meV.It has been applied for light-emitting diodes [4–6],lasers [7],photovoltaic solar cells [8],UV-photodetectors [9]and sensors [10].Particularly,it has attracted great attention in Dye-sensitized solar cells (DSSC). To date,the highest solar-to-electric conversion ef?-ciency of over 11%has been achieved with ?lms that consist of mesoporous TiO 2nanocrystallites sensitized by ruthe-nium-based dyes [11].Besides the optical properties similar to TiO 2,ZnO has other advantages such as higher light absorbance below 400nm than TiO 2[12],improved elec-tronic transfer rate and hindered dark current generation [13,14].Nevertheless,ZnO nanostructure electrodes seem to have insuf?cient internal surface areas,which limits their energy conversion ef?ciency at a relatively low level,for example,1.5–2.4%for ZnO nanocrystalline ?lms [15–17],0.5–1.5%for ZnO nanowire ?lms [18–20],2.7–3.5%for uniform ZnO aggregate ?lms [21,22]and 5.4%for poly-disperse ZnO aggregates [8]. In spite of a great deal of effort to successfully synthesize mesoporous ZnO powders successfully [23,24],however,many barriers still exist due to the intrinsic properties of zinc versus silicon.To the best of our knowledge,there were few reports about ordered mesoporous ZnO thin ?lm prepared by wet chemical method.The main hurdles in the synthesis of well-ordered mesoporous ZnO are the high reactivity of Zn ion precursors toward hydrolysis [25]and dif?culty for Zn to form the three-dimensional network structure of Zn-O as compared to Si and Ti [26]. In this work,we report a highly reproducible synthetic method to produce thermally stable M-ZnO ?lms through doping process and sol–gel method.Photoelectric proper-ties of M-ZnO ?lms were studied and compared with M-TiO 2?lms,which can get the highest solar-to-electric conversion ef?ciency. M.M.Wu áY.Shen (&)áF.Gu áY.A.Xie áJ.C.Zhang áL.J.Wang School of Materials Science and Engineering,Shanghai University,Shanghai 200072,China e-mail:yueshen@https://www.sodocs.net/doc/1912821574.html,;yueshen126@https://www.sodocs.net/doc/1912821574.html, J Sol-Gel Sci Technol (2010)53:470–474DOI 10.1007/s10971-009-2099-7

纳米材料综述 论文

纳米材料综述 1 引言 纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。 1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。 2 纳米材料特性 一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 2.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。 2.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质: 1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些

写毕业论文(设计)的步骤

写毕业论文(设计)的步骤 完成一篇毕业论文,一般要经过以下几个步骤: 一、选题 二、收集、占有资料 三、确立论点,拟定写作提纲 四、撰写初稿 五、修改定稿 一、如何选题 确立论文题目,就是确定研究的目标,研究的主攻方向。考生在选题时应该注意以下三点: 1、论题要大小适中。题目不要太大,尽量"小题大做"。一般来说题目大小要适宜,或小点好驾驭,容易写得丰满。但也不要小到像本单位的工作总结,或意见建议书。论文要求深刻和严谨。所谓深刻就是对某一问题进行深层次、多角度、全方位的探讨。所谓严谨就是观点鲜明,论证有力,层次清晰,语言规范。有的学员怕题目小了,难以展开分析,几句话就说完,甚至连要求的字数也不够。解决这个问题的办法,就是“小题大做”,即从各种不同角度,不同层面展开分析某一“小问题”,要多用些具体材料,图表、公式来证明表达自己的观点。这样,既可以使论文充实、丰满、具有说服力,又可以解决字数不足问题。题目大小适当,才能在短时间内经过努力,可以圆满完成写作任务。 2、注意研究角度要有新意。进行科学研究,就是找问题,没有新问题就谈不上研究,更谈不到创新,论文也就没有写作的价值,因此,确定研究方向只有从新的角度去研究、研究以前没有人研究过的问题,或者是研究过探讨过但说法不一的问题去分析论证,才会得出与众不同的结论,才会见出新意。 3、要知己知彼。在选题中,要了解本专业本领域中已有的科研成果,了解别人已经解决了什么问题,还存在什么问题;是否有争论,争论的焦点是什么;那些方面的研究较薄弱,那些方面的研究尚待开拓等等。只有知己知彼才能避免重复和雷同。 二、根据论题,收集资料,拟定论文提纲 1.收集材料。题目确定之后,要在题目所涉及的领域广泛收集材料。材料一般分为两类,即理论材料和事实材料。理论材料可以到图书馆、资料室、理论性刊物、互联网上按分类目录查找。事实 材料,可从图书、报刊资料中,自己亲身接触到的,他人工作经验,工作中的统计资料、案例等 查找。有条件的可以亲自调查研究。收集材料要多积精选。选择材料的标准,最大限度的选择资 料,应为必要的;最小限度选择资料,应为充分的。收集材料时应注意,真实性(出处;二手资料

纳米材料论文

纳米材料的制备技术进展 摘要综述了国内外块状纳米材料的制备技术进展及存在的问题。提出了超短时脉冲电流直接晶化法和深过冷直接晶化法两类潜在的块状金属纳米晶制备技术,并对今后的研究及发展前景进行了展望。 关键词:纳米晶块体材料制备非晶晶化机械合金化深过冷 自80年代初德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。为使这种新型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。 1现有块状金属纳米材料的制备技术 1.1 惰性气体凝聚原位加压成形法 该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5GPa的压力使纳米粉原位加压(烧结)成块。采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。近年来,在该装置基础之上,通过改进 使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。纳米超饱和合金、纳米复合材料等也正在利用此法研究之中。目前该法正向多组分、计量控制、多副模具、超高压力方向发展。 该法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。但工艺设备复杂,产量极低,很难满足性能研究及应用的要求,特别是用这种方法制备的纳米晶体样品存在大量的微孔隙,致密样品密度仅能达金属体积密度的7

大学本科毕业论文、毕业设计

山东大学本科毕业论文、毕业设计 工作管理条例(试行) 毕业论文、毕业设计教学过程是高等学校实现本科培养目标要求的重要培养阶段。毕业论文、毕业设计是在大学期间学生毕业前的最后学习阶段,是学习深化和提高的重要过程;是学生运用已学过知识的一次全面总结和综合训练;是学生素质与能力培养效果的全面检验;是对学生的毕业及学位资格进行认证的重要依据;是衡量教育质量和办学效益的重要评价内容。因此,搞好比业论文、毕业设计工作,对全面提高教学质量具有重要意义。为了加强对毕业论文、毕业设计工作的规范化管理,根据教育部有关规定和本科专业培养计划的要求,结合我校实际情况,特制定本条例。 本条例适用于全日制本科生毕业论文、毕业设计,全日制专科生毕业论文、毕业设计亦可参照执行。 一、目的和要求 (一)目的 毕业论文是高等学校的应届毕业生在毕业前所撰写的学位论文,表明作者在科学研究工作中取得的新成果和新见解,反映作者具有的科研能力和学识水平。毕业设计是高等学校技术科学与工程技术专业的应届毕业生在毕业前接受课题任务,进行实践的过程及取得的成果。毕业论文、毕业设计的目的是培养学生综合运用所学的基础理论、专业知识和基本技能,提高分析和解决实际问题的能力,使学生在知识、能力素质方面得到综合训练、转化和提高。 (二)要求 各院(部)要加强对毕业论文、毕业设计工作的领导。在毕业论文、毕业设计工作中,要认真贯穿“三个结合”的原则:理论与实践相结合,教学与科研、生产相结合,教育与国民经济建设相结合。通过三个结合,实现毕业论文、毕业设计的教学、教育功能和社会功能。按照高等学校人才培养目标和毕业论文、毕业设计工作教学目标的基本要求,重视学生多学科的理论、知识和技能等综合运用能力的实际训练,加强学生创新意识和创造能力的培养,不断提高毕业论文、毕业设计质量、人才培养质量及教学管理工作水平。 搞好毕业论文、毕业设计工作的关键在于指导教师。各院(部)要采取有效措施,加强指导教师队伍的建设,按要求选配好指导教师,并充分发挥指导教师的作用。要加强对学生毕业论文、毕业设计的选题、指导、答辩、成绩评定等各个环节的质量检查,切实保证毕业论文、毕业设计的质量。 除医学类部分专业(如临床医学、口腔医学、护理学等专业)外,其余专业都要进行毕业论文、毕业设计工作。 二、进程安排

学生选课系统的设计与实现毕业设计

毕业设计 题目学生选课系统的设计与实现学生姓名学号 系别专业 班级 开题时间答辩时间 指导教师职称

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

相关主题