搜档网
当前位置:搜档网 › R25=30k B值3950热敏电阻NTC Thermistor dip RT表

R25=30k B值3950热敏电阻NTC Thermistor dip RT表

R25=30k B值3950热敏电阻NTC Thermistor dip RT表
R25=30k B值3950热敏电阻NTC Thermistor dip RT表

深圳市富温传感技术有限公司

人性科技感知温度

TEMPERATURE VS RESISTANCE TABLE

Resistance 30k Ohms at 25deg. C

B Value 3950K at 25/50 deg. C

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

10KNTC热敏电阻对照表

10K NTC温度阻值对照表 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt -40 235.83075593 2 25.795966881 44 5. 1.4580779678 -39 221.67240981 3 24.673611964 45 4.9 1.4204703156 -38 208.47382602 423.6 ? 7428627464 88 1.3840329328 -37 196.16305694 5 22.594945784 47 4.5885344983 89 1.3487237721 -36 184.67403487 6 21.632463086 48 4. 44 ? 314502486 -35 173.94605364 7 20. 717416866 49 4.2974265762 91 1.2813303512 -34 163.92329912 8 19.847177965 50 4. 16 ?2491701959 -33 154.55442376 9 19. 4. 1.2179863314 -32 145.79216068 10 18.231399185 52 3.9 1.1877444861 -31 137.59297352 11 17.481363273 53 3.7785460774 95 1.1584117439 -30 129.91673843 12 16.767123414 54 3.66 ? 1299564843 -29 122.72645506 13 16. 3. 5472659437 97 1.1023483265 -28 115.9879839 14 15.438447903 56 3.4379794071 98 1.075558075 -27 109.66980711 15 14.820498836 57 3.3326915609 99 1.0495576687 -26 103.74281093 16 14.231304683 58 3.2312350849 100 1.024******* 0.9998195293 -25 98. 13.669355966 59 3. 01 2

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

(完整word版)NTC热敏电阻5K,10K,50K,100K阻值与温度对应RT表.doc

TEMPERATURE VS RESISTANCE TABLE Resistance5k Ohms at 25deg. C Resistance Tolerance+ / - 1 % B Value3470K at 25/50 deg. C B Value Tolerance+ / - 1 % Temp. Rmax Rnor Rmin (deg. C) (k Ohms) (k Ohms) (k Ohms) -20 37.7588 36.6476 35.5656 -19 35.8710 34.8331 33.8218 -18 34.0895 33.1199 32.1745 -17 32.4076 31.5016 30.6178 -16 30.8191 29.9724 29.1460 -15 29.3184 28.5270 27.7542 -14 27.9000 27.1602 26.4374 -13 26.5589 25.8672 25.1911 -12 25.2904 24.6438 24.0113 -11 24.0903 23.4857 22.8939 -10 22.9545 22.3890 21.8353 -9 21.8790 21.3502 20.8321 -8 20.8605 20.3659 19.8810 -7 19.8954 19.4328 18.9791 -6 18.9808 18.5481 18.1235 -5 18.1137 17.7090 17.3115 -4 17.2913 16.9127 16.5408 -3 16.5111 16.1570 15.8089 -2 15.7708 15.4395 15.1138 -1 15.0679 14.7581 14.4533 0 14.4005 14.1108 13.8255 1 13.7666 13.4956 13.2286 2 13.1642 12.9108 12.6610 3 12.5917 12.3547 12.1210 4 12.0473 11.8258 11.6072 5 11.529 6 11.3226 11.1181 6 11.0372 10.8436 10.6524 7 10.5685 10.3877 10.2089 8 10.1225 9.9535 9.7863 9 9.6977 9.5399 9.3837 10 9.2932 9.1458 8.9998

热敏电阻B值

B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。 B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。 温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将B值换算成电阻温度系数: 电阻温度系数=B值/T^2 (T为要换算的点绝对温度值) NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。 NTC热敏电阻B值公式的: B= T1T2 Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。V NTC热敏电阻B值公式。 先更正昨天的帖子,我用的热敏电阻的精度是1%,不是3%。 B= T1T2 Ln(RT1/RT2)/(T2-T1) ——(1) B:NTC热敏电阻的B值,由厂家提供;

RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值,厂家提供的是温度为298.15K (25摄氏度)时的阻值。 T1、T2:绝对温标。 我还是针对昨天的原理图简单的说说:由(1)式可得: RT1/RT2=e B(1/T1-1/T2)————————(2) 取T1=298.15K,此时热敏电阻的阻值为RT1=10K,故取R1=10K,设温 度为T2时的分压值为V2,则:V2=RT2Vcc/(RT2+R1),得 RT2=V2R1/(Vcc-V2),所以 RT1/RT2=Vcc/V2-1 代入(2)式得 e B(1/T1-1/T2) =Vcc/V2-1 得 B(1/T1-1/T2)=Ln(Vcc/V2-1) T2=T1/(1-T1(Ln(Vcc/V2-1))/B)设8位ADC输出值为N,则 Vcc/V2-1=256/N-1 所以 T2=T1(1-T1(Ln(256/N-1))/B)换算为摄氏温度后则 T=T2-273.15 你可以用C或VB编个程序从N=0开始到N=255计算出温度表,然后以N为索引查表直接得到温度。也可以通过实际测试出温度值构成温度表格,采用插值等算法得到温度值。我这里是以T1=25度计算的,你可以通过调整T1的值来测试更高或更低温度。

PTC热敏电阻基础知识总结

热敏电阻的物理特性与表示 热敏电阻的物理特性用下列参数表示: 电阻值、B值、耗散系数、热时间常数、电阻温度系数。 1、电阻值:R〔Ω〕 电阻值的近似值表示为:R2=R1exp[1/T2-1/T1] 其中:R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B:B值〔K〕 2、B值:B〔k〕 B值是电阻在两个温度之间变化的函数,表达式为: B= InR1-InR2 =2.3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2 其中:B:B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕 3、耗散系数:δ〔mW/℃〕 耗散系数是物体消耗的电功与相应的温升值之比。δ= W/T-Ta = I2 R/T-Ta 其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上的电流值〔mA〕R:在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。 4、热时间常数:τ〔sec.〕 热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。 5、电阻温度系数:α〔%/℃〕 α是表示热敏电阻器温度每变化1oC,其电阻值变化程度的系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为: α = 1/R·dR/dT×100 = -B/T2×100 其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B:B值〔K〕 PTC热敏电阻发热元件 一、PTC热敏电阻的简介: PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。 有恒温、调温、自动控温的特殊功能 当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。 不燃烧、安全可靠 PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。 省电 PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。 寿命长 PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。并且多孔型比无孔型寿命更长。 结构简单 PTC元件本身自动控温,不需另加自动控制温度线路装置。特别是我公司新产品棗多孔型PTC更不需要其他散热装置,也不需用导电胶。 使用电压范围广 PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。 二、PTC热敏电阻的应用: 低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。 高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手

NTC10K_热敏电阻温度阻值对应表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

温度传感器原理及热敏电阻NTC温度常数β值计算温度

温度传感器原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1-1所示。当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所调用标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶和温度传感器热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化温度传感器热电偶为我国统一设计型温度传感器热电偶。 (2)温度传感器热电偶的结构形式为了保证温度传感器热电偶可靠、稳定地工作,对它的结构要求如下: ①组成温度传感器热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与温度传感器热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.温度传感器热电偶冷端的温度补偿 由于温度传感器热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都

NTC热敏电阻B值得计算

NTC热敏电阻B值得计算 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。 B值是热敏电阻的材料常数,或叫热敏指数。 B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。? 温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将B值换算成电阻温度系数:? 电阻温度系数=B值/T^2?(T为要换算的点绝对温度值)? NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。? 以上就是按我自己的理解所做的回答,我是做这个的,如果你还有什么问题,可以加我为好友,或给我发送信息。? NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。 NTC热敏电阻B值公式的:?B=?T1T2?Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。

ntc热敏电阻b值实例详解

ntc热敏电阻b值实例详解 ntc热敏电阻https://www.sodocs.net/doc/1b12731272.html,/中有一个比较常见的参数,即ntc热敏电阻的b值。在同一配方和烧结温度下,热敏电阻器的芯片经过高温烧结所形成的材料具有一个特定的电阻率,这就是材料常数B值。 B值是可以测量的,一般选择在25℃,50℃时电阻值进行计算的。从b值与电阻温度系数公式:电阻温度系数=B值/T^2,可以看出,b值与产品电阻温度系数是成正比例的。 不同的配方或烧结温度,就会有不同的b值,NTC温度传感器 https://www.sodocs.net/doc/1b12731272.html,/的b值一般在2000K-6000K之间,B值越大,越灵敏, 温度测量、温度补偿以及抑制浪涌电阻等情况下,b值一般大点好。B值越大,同样的温度下,电阻越小。 NTC热敏电阻B值公式的: B= T1T2 Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。 NTC热敏电阻B值公式。 先更正昨天的帖子,我用的热敏电阻的精度是1%,不是3%。 B= T1T2 Ln(RT1/RT2)/(T2-T1) ——————————(1) B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值,厂家提供的是温度为298.15K (25摄氏度)时的阻值。 T1、T2:绝对温标。 我还是针对昨天的原理图简单的说说: 由(1)式可得:

B(1/T1-1/T2) RT1/RT2=e ——————————————(2) 取T1=298.15K,此时热敏电阻的阻值为RT1=10K,故取R1=10K,设温度为T2时的分压值为V2,则:V2=RT2Vcc/(RT2+R1),得RT2=V2R1/(Vcc-V2),所以 RT1/RT2=Vcc/V2-1 代入(2)式得 B(1/T1-1/T2) e =Vcc/V2-1 得B(1/T1-1/T2)=Ln(Vcc/V2-1) T2=T1/(1-T1(Ln(Vcc/V2-1))/B) 设8位ADC输出值为N,则Vcc/V2-1=256/N-1 所以T2=T1(1-T1(Ln(256/N-1))/B) 换算为摄氏温度后则 T=T2-273.15 你可以用C或VB编个程序从N=0开始到N=255计算出温度表,然后以N为索引查表直接得到温度。也可以通过实际测试出温度值构成温度表格,采用插值等算法得到温度值。我这里是以T1=25度计算的,你可以通过调整T1的值来测试更高或更低温度

10K热敏电阻阻值参数

10K 负温度系数热敏电阻(NTC )温度与阻值对应关系表 默认分类 2010-05-20 14:50:44 阅读210 评论0 字号:大中小 订阅 B 常数3380R 值 10温度T1阻值Rt 温度T1阻值Rt 温度T1阻值Rt 温度T1阻值Rt -40235.831225.79644 5.0704486 1.45808-39221.672324.673645 4.903487 1.42047-38208.474423.607746 4.7428688 1.38403-37196.163522.594947 4.5885389 1.34872-36184.674621.632548 4.4401490 1.3145-35173.946720.717449 4.2974391 1.28133-34163.923819.847250 4.1601492 1.24917-33154.554919.019351 4.0280493 1.21799-32145.7921018.231452 3.9009294 1.18774-31137.5931117.481453 3.7785595 1.15841-30129.9171216.767154 3.6607396 1.12996-29122.7261316.086855 3.5472797 1.10235-28115.9881415.438456 3.4379898 1.07556-27109.671514.820557 3.3326999 1.04956-26103.7431614.231358 3.23124100 1.02432-2598.18011713.669459 3.133451010.99982-2492.95681813.133260 3.039191020.97603-2388.04981912.621661 2.94831030.95293-2283.43792012.133262 2.860641040.93049-2179.10132111.666863 2.776091050.9087-2075.02172211.221364 2.694521060.88753-1971.18222310.795765 2.615811070.86696-1867.5672410.388966 2.539841080.84697-1764.1615251067 2.46651090.82754-1660.9521269.6281368 2.39571100.80866-1557.9264279.2724369 2.327321110.7903-1455.0724288.9321170 2.261281120.77245-1352.3794298.606471 2.197471130.75509-1249.8373308.2946172 2.135831140.73821-1147.4365317.9960573 2.076251150.72179-1045.1683327.7100974 2.018661160.70582-943.0245337.4361275 1.962991170.69028-840.9975347.1735876 1.909161180.67516-739.080235 6.9219277 1.85711190.66045-637.265936 6.6806478 1.806741200.64612-535.548437 6.4492479 1.758031210.63218-433.92238 6.2272780 1.710891220.61861-332.381239 6.0142881 1.665271230.6054-230.92140 5.8098782 1.621121240.59253-129.536641 5.6136583 1.578371250.58028.223742 5.4252384 1.536981260.567791 26.9781 43 5.24428 85 1.4969 127 0.5559 计算公式:Rt =R*EXP(B*(1/T1-1/T2) 说明:1、Rt 是热敏电阻在T1温度下的阻值; 2、R 是热敏电阻在T2常温下的标称阻值; 3、B 值是热敏电阻的重要参数; 4、EXP 是e 的n 次方; 5、这里T1和T2指的是K 度即开尔文温度,K 度=273.15(绝对温度)+摄氏度;已知条件单位 k 创建人:LXF 日期:2008-6-11

NTC热敏电阻的阻值计算方法

(一)测温原理: 本设计通过采集一个简单的电路(将NTC 热敏电阻与一个阻值为10K Ω的电阻串联)其中热敏电阻上的电压信号,然后通过高精度的AD7799转换器将其转换成数字信号,再输入单片机中处理,利用实现编写的单片机内部的程序先计算此时热敏电阻的电阻值,最后再根据一定的换算公式求出此时对于的热敏电阻所处的环境的温度,并将之显示于液晶显示器上。 (二)温度换算的方法 由上述原理可知,此次论文的一个关键部分在于,如何根据热敏电阻的实时电阻值来计算相应的环境温度。 让我们先来介绍下NTC 热敏电阻的温度与电阻值的相应关系。NTC 负温度系数热敏电阻专业术语-- 零功率电阻值 T R (Ω):T R 指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。电阻值和温度变化的关系式为: 1/TN)-B(1/T e ?=N T R R ( 式2-1) 对上面的公式解释如下: 1. T R 是热敏电阻在温度T 下的阻值; 2. N R 是热敏电阻在N T 常温下的标称阻值; 3. B 值是热敏电阻的重要参数; 4. 这里T 和N T 指的是K 度即开尔文温度,K 度=273.15(绝对温度)+摄氏度; 举个例子,我手头有一个 GT502F3270型号的热敏电阻 GT —— 型号是玻璃封装 502 —— 常温25度的标称阻值为5K F —— 允许偏差为±1[%] 3270 —— B 值为3270K 的NTC 热敏电阻 那它的N R =5000, N T =273.15+25,B=3270,???? ????? ??+-??=255.273113270e 5000 T T R , 这时候代入T 温度就可以求出相应温度下热敏电阻的阻值,注意温度单位的转换,例如我们要求零上10摄氏度的阻值,那么T 就为(273.15+10)。反过来,根据此次设计的原理,在知道T 温度下的热敏电阻的阻值,根据公式我们就能反求这个温度T 。 但实际上,热敏电阻的B 值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C 。因此在较大的温度范围内应用式2-1时,将与实测值之间存在一定误差。此处,若将式2-1中的B 值用式2-2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 E DT CT B T ++=2 (式2-2) 上式中,C 、D 、E 为常数。另外,因生产条件不同造成的B 值的波动会引起常数E 发生

电阻阻值计算方式贴片电阻热敏电阻

导体的电阻通常用字母R表示,电阻的单位是欧姆(ohm),简称欧,符号是Ω(希腊字母,读作Omega),1Ω=1V/A。比较大的单位有千欧(kΩ)、兆欧(MΩ)(兆=百万,即100万)。 KΩ(千欧),MΩ(兆欧),他们的换算关系是:两个电阻并联式也可表示为 1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千进率) 颜色数值倍成数公差 黑色0 x 1 —— 棕色 1 x 10 正负1% 红色 2 x 100 正负2% 橙色 3 x 1000 —— 黄色 4 x 10000 —— 绿色 5 x 100000 正负0.5% 蓝色 6 x 1000000 正负0.25% 紫色7 x 10000000 正负0.10% 灰色8 ——正负0.05% 白色9 ———— 金色——x 0.1 正负5% 银色——x0.01 正负10% 无色环————正负20% 由于贴片电阻比较小,很少被标上阻值,即使有,一般也采用数字法,即:101——表示10*10^1Ω即100欧的电阻; 102——表示10*10^2Ω即1KΩ的电阻; 103——表示10*10^3即10KΩ的电阻;

104——表示10*10^4即100KΩ的电阻; 503——表示50*10^3即50KΩ的电阻; 依次类推。如果一个电阻上标为22*103,则这个电阻为220KΩ。 为什么贴片电阻01C 的阻值是10K, D1D是100K, 18A是150欧, 02C是10.

2K ? 前两位是阻值代码,如代码01 对应阻值是“100欧姆”。 后一位字母表示数字零的个数。 和在一起就是该电阻的阻值。 例如:01代表有效数字是100;C表示×10的二次方,01C=100×100=10K 单位是欧姆 贴片电阻的封装与功率关系如下表: 封装额定功率@ 70°C 最大工作电压(V) 英制(inch) 公制(mm) 常规功率系列提升

热敏电阻温度计的设计与标定

热敏电阻温度计的设计与标定 一、实验内容与实验要求 1.电阻温度计包括金属电阻温度计和半导体温度计,本实验要求利用 半导体材料制备的热敏电阻设计出能够测量常温的温度计,测温范围“实 验室室温-75℃” 2.对温度计进行定标,绘制T-I(温度-电流)定标曲线。 3.用标定后的温度计,测量人体手心的温度,并与标准温度计所测量 结果进行比较。 二、实验前应考虑并回答的问题 1. 金属、半导体电阻随温度变化大致有怎么样的规律? 2. 金属或半导体材料制成的热敏电阻随温度变化是线性的吗? 3. 传感器为什么要定标? 4. 非平衡电桥有什么用途? 三、实验室可以提供的主要仪器 1. 负温度系数半导体热敏电阻一支[25℃时电阻约5KΩ,B值3950/℃] 2. 可调温压电源、微安表、万用表(不能当电压表用)。 3. 电加热水壶、金属水杯。 4. 玻璃温度计一支(0~100℃,准确度1℃)。 5. 电阻箱3个、塑料清洗瓶1个、开关和导线等。 四、实验设计报告和实验报告的要求 (1). 实验设计报告的要求: 1.实验目的; 2.实验仪器[含仪器参数]; 3.实验原理[热敏电阻、非平衡电桥测温原理,有电流-电阻关系公式,实验设计思路解释]; 4. 电路中仪器的可调物理量数值预先选定和计算[电桥上三个电阻阻值、电源总电压等], 5. 实验步骤[结合预先选择和计算的的数据,准确写出“把电阻箱阻值调到xxΩ,电源电压调到x.xxV”], 6. 数据表[结合测量量和自变量,此外,电路中所用仪器的数值量都要记录; 7. 实验注意事项。 (2) 实验报告的要求: 在实验设计报告的基础上,增加实验中测量到的数据,完成数据处理和分析,实验总结和感受。 五、实验原理:

相关主题