《人工智能》课程大纲

课程名称:人工智能(Artificial Intelligence)

撰写人:年福忠审核人:张永李明

一、课程编号:305316

二、学时学分:32学时,2.0学分

三、先修课程:离散数学,程序设计

四、适合专业:计算机科学与技术

五、课程性质和任务

人工智能是一门综合性前沿学科,是计算机学科的重要分支。通过对人工智能课程的学习,使学生掌握人工智能技术的基本原理;了解启发式搜索策略、与或图搜索问题、谓词逻辑与归结原理、知识表示、不确定性推理方法、机器学习和知识发现等目前人工智能的主要研究领域的原理、方法和技术;增强学生的逻辑思维与实验能力,为今后在各自领域开拓高水平的人工智能技术应用奠定基础。

六、主要教学内容

1、人工智能研究的发展和基本原则:人工智能的研究和应用;人工智能研究的发展;人工智能研究的成果;人工智能研究的基本原则;存在的问题和发展前景

2、一般图搜索:回溯策略、图搜索策略、无信息搜索过程、启发式图搜索过程、搜索算法讨论。

3、与或图搜索问题:与或图的搜索、与或图的启发式搜索算法AO*、博弈树的搜索。

4、谓词逻辑与归结原理:命题逻辑、谓词逻辑基础、谓词逻辑归结原理、HERBRAND定理。

5、知识表示:知识、知识表示、知识观、产生式表示方法、语义网络表示、框架表示以及其他表示方法。

6、不确定性推理方法:不确定性推理的基本问题、贝叶斯网络、主观贝叶斯方法、确定性方法、证据理论。

7、机器学习:机器学习概论、实例学习、基于解释的学习、决策树学习、神经网络学习、知识发现与数据挖掘。

8、高级搜索:基本概念、局部搜索算法、模拟退火算法、遗传算法等。

七、教学基本要求

根据课程在知识结构中的作用,教学要求分为掌握、熟悉、了解、选学四个层次,具体要求如下。

1.掌握部分:一般图搜索(回溯策略、图搜索策略、无信息搜索过程、启发式图搜索过程);与或图搜索问题包括与或图的启发式搜索算法AO*、博弈树的搜索;谓词逻辑与归结原理(谓词逻辑归结原理、HERBRAND定理);知识表示(产生式表示方法、语义网络表示、框架表示);不确定性推理方法(不确定性推理的基本问题、贝叶斯网络、主观贝叶斯方法、确定性方法)

2.熟悉部分:不确定性推理方法之证据理论;机器学习(机器学习概论、实例学习、基于解释的学习、决策树学习、神经网络学习)。

3.了解部分:人工智能研究的发展和基本原则;知识原则、知识表示的作用、功能、性能;自动规划技术的新进展,人工智能的最新进展和面临的挑战。

4.选学部分:高级搜索

相关推荐
相关主题
热门推荐