搜档网
当前位置:搜档网 › 高考数学二轮总复习第一部分专题攻略专题二函数与导数四基本初等函数函数与方程及函数的应用课时作业文

高考数学二轮总复习第一部分专题攻略专题二函数与导数四基本初等函数函数与方程及函数的应用课时作业文

高考数学二轮总复习第一部分专题攻略专题二函数与导数四基本初等函数函数与方程及函数的应用课时作业文
高考数学二轮总复习第一部分专题攻略专题二函数与导数四基本初等函数函数与方程及函数的应用课时作业文

课时作业(四) 基本初等函数、函数与方程及函数的应用

易知函数y =x 2ln|x |

|x |

是偶函数,可排除B ,当x >0时,y =x ln x ,,所以当x >0时,函数在(e -1

,+∞)上单调递增,结合图象可知

+(a+b)x-ab+

所以可在平面直角坐标系中作出函数

.

℃)与时间t(月份)之间的关系如图所示,

,t]的平均气温,下列四个函数图象中,

若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,

个月的平均气温为10 ℃,所以当t=12时,平均气温应该为

12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均

10 ℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D,故选A.

的图象如图所示,>0

的图象的交点个数.

答案:(1,+∞)

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

高中数学 多项式函数的导数素材

多项式函数的导数 教学目的:会用导数的运算法则求简单多项式函数的导数 教学重点:导数运算法则的应用 教学难点:多项式函数的求导 一、复习引入 1、已知函数2)(x x f =,由定义求)4()(/ /f x f ,并求 2、根据导数的定义求下列函数的导数: (1)常数函数C y = (2)函数)(*N n x y n ∈= 二、新课讲授 1、两个常用函数的导数: 2、导数的运算法则: 如果函数)()(x g x f 、有导数,那么 也就是说,两个函数的和或差的导数,等于这两个函数的导数的和或差;常数与函数的积的导数,等于常数乘函数的导数. 例1:求下列函数的导数: (1)37x y = (2)43x y -= (3)3 534x x y += (4))2)(1(2-+=x x y (5)b a b ax x f 、()()(2+=为常数 )

例2:已知曲线331x y =上一点)3 82(,P ,求: (1)过点P 的切线的斜率; (2)过点P 的切线方程. 三、课堂小结:多项式函数求导法则的应用 四、课堂练习:1、求下列函数的导数: (1)28x y = (2)12-=x y (3)x x y +=2 2 (4)x x y 433-= (5))23)(12(+-=x x y (6))4(32-=x x y 2、已知曲线24x x y -=上有两点A (4,0),B (2,4),求: (1)割线AB 的斜率AB k ;(2)过点A 处的切线的斜率AT k ;(3)点A 处的切线的方程. 3、求曲线2432+-=x x y 在点M (2,6)处的切线方程. 五、课堂作业 1、求下列函数的导数: (1)1452+-=x x y (2)7352++-=x x y (3)101372-+=x x y (4)333x x y -+= (5)453223-+-=x x x y (6))3)(2()(x x x f -+= (7)1040233)(34-+-=x x x x f (8)x x x f +-=2)2()( (9))3)(12()(23x x x x f +-= (10)x x y 4)12(32-+= 2、求曲线32x x y -=在1-=x 处的切线的斜率。 3、求抛物线241x y = 在2=x 处及2-=x 处的切线的方程。 4、求曲线1323+-=x x y 在点P (2,-3)处的切线的方程。

2014高考二轮复习函数与导数专题(理科普通班)

肥东锦弘中学2014届高三二轮复习专题二——函数与导数 一 函数的概念 1 函数) 12(log 1)(2 1+=x x f 的定义域是 2 函数)(x f 的定义域是][2,0,则函数x x f x g ln )2()(=的定义域是 3 函数?????<+≥=4 ),1(4,)21()(x x f x x f x ,则)5log 1(2+f 的值为 4 求下列函数的值域 (1)1(0)y x x x =+>; (2)4 32++=x x x y (3)2552+++=x x x y ; (4)22232(0)(1) k k y k k ++=>+ 5 设函数2()2()g x x x R =-∈,()4()()()()g x x x g x f x g x x x g x +++-=+-a a a x g x f x x 且1≠a ,若a g =)2(,则=)2(f 3 已知定义在R 的函数)(x f ,且函数)3(-=x f y 的图像关于点)(0,3对称,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围 4 设函数1 sin )1()(22+++=x x x x f 的最大值是M ,最小值是m ,则=+m M 5 已知定义在R 上的偶函数)(x f 满足)2()()4(f x f x f +=+,且在区间[0,2]上是减函数,有下列命题: (1)0)2(=f ; (2) 函数)(x f 的图象关于直线4-=x 对称; (3)函数)(x f 在(8,10)上单调递增; (4)若关于x 的方程m x f =)(在区间[-6,2]的两根为21,x x ,则这两根之和为-8.

(完整word)高二用导数复习专题

导数复习专题 一、知识要点与考点 (2)导数的求法:一是熟练常见函数的导数;二是熟练求导法则:和、差、积、商、复合函数求导。 (3)导数的应用:一是函数单调性;二是函数的极值与最值(值域);三是比较大小与证明不等式; 四是函数的零点个数(或参数范围)或方程的解问题。 (4) 八个基本求导公式 )('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x = ; )('x e = , )('x a = ;)(ln 'x = , )(log 'x a = (5) 导数的四则运算 )('±v u = ])(['x Cf = )('uv = ,)('v u = )0(≠v (6) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且 x u x u y y '?'='.例1.求下列函数的导数 (1)51x y x = - (2)2sin (12cos )2 x y x =-- (3) 2x y e = 二、考点分析与方法介绍 考点一 导数的几何意义 例2已知曲线y=.34313+x (1)求曲线在x=2处的切线方程; (2)求曲线过点(2,4)的切线方程. 变式练习1:求过原点与函数y=lnx 相切的直线方程。 变式练习2:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= . 【答案】例1(1):4x-y-4=0.(2)4x-y-4=0或x-y+2=0. 试一试1:e x y = ;试一试2: 2或41 -

巩固练习:若曲线12 y x -=在点12,a a -?? ???处的切线与两个坐标围成的三角形的面积为18,则 a = (A )64 (B )32 (C )16 (D )8 题型与方法:(1)单调区间:一般分为含参数和不含参数问题,含参数的求导后又分导函数能分解与不能分解两类,能分解讨论两根大小;不能分解,讨论判别式。不含参数的直接求解。一般思路:一、求函数定义域;二、求导数;三、列方程、并解之;四、定区间号;五、得解。(2)证明函数单调性。 例3讨论以下函数的单调性 (1)(2010江西理改编))设函数()()ln ln 2(0)f x x x ax a =+-+>。当a=1时,求()f x 的 单调区间。 (2)(10山东改编)已知函数1()ln 1()a f x x ax a R x -=-+ -∈,当12a ≤时,讨论()f x 的单调性. (3)(2010江苏改编)设函数)(x f 2ln (1)1 b x x x +=+ >+,其中b 为实数。求函数)(x f 的单调区间。 答案:(1)当()0,x f x '∈>为增区间;当()0,x f x '∈<为减函数。

2022年高考数学总复习:导数与函数的综合问题

第 1 页 共 15 页 2022年高考数学总复习:导数与函数的综合问题 命题点1 证明不等式 典例 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )= x -1x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e 2. 命题点2 不等式恒成立或有解问题 典例 已知函数f (x )=1+ln x x . (1)若函数f (x )在区间? ???a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.

高中数学题型归纳大全函数与导数题专题练习二

高中数学题型归纳大全函数与导数题专题练习二 9.已知函数f(x)=x(e2x﹣a). (1)若y=2x是曲线y=f(x)的切线,求a的值; (2)若f(x)≥1+x+lnx,求a的取值范围. 10.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2. (Ⅰ)求a,b,c,d的值; (Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围. 11.已知函数f(x)=alnx x+1 +b x,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3 =0. (Ⅰ)求a、b的值; (Ⅱ)证明:当x>0,且x≠1时,f(x)>lnx x?1.

12.已知函数f(x)=(a ?1 x )lnx (a ∈R ). (1)若曲线y =f (x )在点(1,f (1))处的切线方程为x +y ﹣1=0,求a 的值; (2)若f (x )的导函数f '(x )存在两个不相等的零点,求实数a 的取值范围; (3)当a =2时,是否存在整数λ,使得关于x 的不等式f (x )≥λ恒成立?若存在,求出λ的最大值;若不存在,说明理由. 13.已知函数f (x )=4lnx ﹣ax +a+3 x (a ≥0) (Ⅰ)讨论f (x )的单调性; (Ⅱ)当a ≥1时,设g (x )=2e x ﹣4x +2a ,若存在x 1,x 2∈[1 2,2],使f (x 1)>g (x 2), 求实数a 的取值范围.(e 为自然对数的底数,e =2.71828…) 14.已知函数f (x )=a x +x 2﹣xlna (a >0且a ≠1) (1)求函数f (x )在点(0,f (0))处的切线方程;

函数与导数专题复习(精编)

函数与导数专题复习【知识网络】

第1课时 客观题中的函数常见题型 【典例分析】 题型一、函数的解析式 例1.(2010年高考陕西卷理科5)已知函数?????≥+<+=1 ,1 ,12)(2x ax x x x f x ,若((0))f f =4a , 则实数a =( ) (A ) 12 (B )4 5 (C) 2 (D ) 9 题型二、函数的定义域与值域 例2.(2009年江西卷)函数2 34 y x x = --+的定义域为( ) A .(4,1)-- B .(4,1)- C .(1,1)- D .(1,1]- 例3.(2008年江西卷)若函数()y f x =的值域是1,32?????? ,则函数()()1 ()F x f x f x =+ 的值域是( ) A .[21,3] B .[2,310] C .[25,310] D .[3,3 10] 整理:求函数值域的方法: (1) 观察法:观察函数特点 (2) 图像法:一元二次函数, 对勾函数, 指数函数, 对数函数, 三角函数 (3) 分离常数 (4) 换元法

题型三、函数的性质(奇偶性、单调性与周期性) 例4.(2010年高考山东卷理科4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 例5.(2010年高考江西卷理科9)给出下列三个命题: ①函数11cos ln 21cos x y x -= +与ln tan 2 x y =是同一函数; ②若函数()y f x =与()y g x =的图像关于直线y x =对称,则函数(2)y f x =与 1 ()2 y g x =的图像也关于直线y x =对称; ③若奇函数()f x 对定义域内任意x 都有()(2)f x f x =-,则()f x 为周期函数. 其中真命题是 A .①② B .①③ C .②③ D .② 题型四、函数图像的应用 例6.(2010年高考山东卷理科11)函数y =2x -2 x 的图像大致是 题型五、函数的最值与参数的取值范围 例7.(2010年高考江苏卷试题14)将边长为1m 正三角形薄片,沿一条平行于底边的 直线剪成两块,其中一块是梯形,记2 (S =梯形的周长) 梯形的面积 ,则S 的最小值是_______.

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

高中数学专题复习:专题复习(六)——函数与导数

专题复习(六)—— 函数与导数 (一)知识梳理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义 函数f (x )在x =x 0处的导数就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率. (3)函数f (x )的导函数 称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.函数的单调性与导数的关系 已知函数f (x )在某个区间内可导,则 (1)如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; (2)如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减; (3)若f ′(x )=0恒成立,则f (x )在这个区间内是常数函数. 5.理清导数与函数单调性的关系

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的综合问题最值教学案理解析版

利用导数解决不等式的有关问题 ?考法1证明不等式 【例1】(2018·郑州二模)已知函数f(x)=ln x—2ax+1(a∈R). (1)讨论函数g(x)=x2+f(x)的单调性; (2)若a=错误!,证明:|f(x)—1|>错误!+错误!. [解] (1)由题意知函数y=g(x)的定义域为(0,+∞), g(x)=x2+ln x—2ax+1, 则g′(x)=错误!+2x—2a=错误!(x>0), 记h(x)=2x2—2ax+1, 1当a≤0时,因为x>0,所以h(x)>0,故函数g(x)在(0,+∞)上递增; 2当0<a≤错误!时,因为Δ=4(a2—2)≤0, 所以h(x)≥0,故函数g(x)在(0,+∞)上递增; 3当a>错误!时,由g′(x)<0,解得x∈错误!,所以函数g(x)在区间错误!上递减,同理可得函数g(x)在区间错误!,错误!上递增. (2)证明:当a=错误!时,设H(x)=f(x)—1=ln x—x, 故H′(x)=错误!, 故H′(x)<0,得x>1,由H′(x)>0,得0<x<1, 所以H(x)m ax=f(1)—1=—1,所以|H(x)|min=1. 设G(x)=错误!+错误!, 则G′(x)=错误!, 由G′(x)<0,得x>e, 由G′(x)>0,得0<x<e, 故G(x)m ax=G(e)=错误!+错误!<1, 所以G(x)m ax<|H(x)|min, 所以|f(x)—1|>错误!+错误!.

?考法2由不等式恒(能)成立求参数的范围 【例2】已知函数f(x)=错误!. (1)如果当x≥1时,不等式f(x)≥错误!恒成立,求实数k的取值范围; (2)若存在x0∈[1,e],使不等式f(x0)≥错误!成立,求实数k的取值范围. [解] (1)当x≥1时,k≤错误!恒成立, 令g(x)=错误!(x≥1), 则g′(x)=错误!=错误!. 再令h(x)=x—ln x(x≥1), 则h′(x)=1—错误!≥0, 所以h(x)≥h(1)=1,所以g′(x)>0, 所以g(x)为增函数, 所以g(x)≥g(1)=2, 故k≤2,即实数k的取值范围是(—∞,2]. (2)当x∈[1,e]时,k≤错误!有解, 令g(x)=错误!(x∈[1,e]), 由(1)题知,g(x)为增函数, 所以g(x)m ax=g(e)=2+错误!, 所以k≤2+错误!,即实数k的取值范围是错误!. [规律方法] 1.利用导数证明含“x”不等式方法,即证明:f x>g x.,法一:移项,f x—g x>0,构造函数F x=f x—g x,转化证明F x min>0,利用导数研究F x 单调性,用上定义域的端点值.,法二:转化证明:f x min>g x m ax.,法三:先对所求证不等式进行变形,分组或整合,再用法一或法二. 2.利用导数解决不等式的恒成立问题的策略,1首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参数不等式,从而求出参数的取值范围.,2也可分离变量,构造函数,直接把问题转化为函数的最值问题. 32 (1)如果存在x1,x2∈[0,2]使得g(x1)—g(x2)≥M成立,求满足上述条件的最大整数M;

高中数学导数专题训练

精心整理 高二数学导数专题训练 一、选择题 1.一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是() A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为() A.1 B.2 C.-1 D.0 3()f x 与(f x A (f C (f 4.函数y A (5.若函数A.f(x)6.0'()f x A C 7.曲线f A (1,0)C (1,0)8.函数y A.C.9.对于R A (0)(2)2(1)f f f + 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为() A .' 0()f x B .' 02()f x C .' 02()f x -D .0 二、填空题 11.函数32 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是.

13.曲线x x y 43 -=在点(1,3)-处的切线倾斜角为__________. 14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ?? ??+?? 的前n 项和的公式是 . 三、解答题: 15.求垂直于直线2610x y -+=并且与曲线3 2 35y x x =+-相切的直线方程 16 17 (1)求y (2)求 y 18(I (II (III 19(I (II 20.已知x (1)求m (2)求f (3)当x AABCBACCDB 二、填空题 11.递增区间为:(-∞,13),(1,+∞)递减区间为(1 3 -,1) (注:递增区间不能写成:(-∞,1 3 )∪(1,+∞)) 12.(,0)-∞13.3 4 π 14.1 2 2n +-()()/ 112 22,:222(2)n n n x y n y n x --==-++=-+-切线方程为,

(完整版)高考数学专题复习函数与导数(理科)练习题

高考数学专题复习 《函数与导数》 练习题 1.已知函数x b a x f ?=)(的图像过点)4 1,4(A 和)1,5(B . (1)求函数)(x f 的解析式; (2)记)(log 2n f a n =,n 是正整数,n S 是数列{}n a 的前项和,求满足0≤?n n S a 的n 值. 2.已知函数)(x f y =是定义在R 上的周期函数,5是)(x f 的一个周期,函数)(x f y = 在[]1,1-上是奇函数,又知)(x f y =在区间[]1,0上是一次函数,在区间[]4,1上是二次函数,且2=x 在时函数)(x f y =取得最小值-5 (1)证明:0)4()1(=+f f ; (2)试求函数)(x f y =在[]4,1上的解析式; (3)试求函数)(x f y =在[]9,4上的解析式. 3.我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每 张球台每小时5元,乙家按月计费,一个月中30小时以内(含30小时),每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台,其活动时间不少于15小时,也不超过40小时. (1)设在甲家租一张球台开展活动x 小时的收费为)(x f 元)4015(≤≤x ,在乙家租一张球台开展活动x 小时的收费为)4015)((≤≤x x g ,试求)(x f 和)(x g . (2)问:小张选择哪家比较合算?为什么?

4.已知a x x x a x f ),2,2((,2 1)(3 2 -∈- =为正常数. (1)可以证明:定理“若+ ∈R b a ,,则ab b a ≥+2 (当且仅当b a =时取等号)” 推广到三个正数时结论是正确的,试写出推广后的结论(无需证明); (2)若0)(>x f 在)2,0(上恒成立,且函数)(x f 的最大值大于1,求实数a 的取值范围, 并由此猜测)(x f y =的单调性(无需证明); (3)对满足(2)的条件的一个常数a ,设1x x =时,)(x f 取得最大值.试构造一个定义 在},24,2|{N k k x x x D ∈-≠->=且上的函数)(x g ,使当)2,2(-∈x 时, )()(x f x g =,当D x ∈时,)(x g 取得最大值的自变量的值构成以1x 首项的等差数 列. 5.设函数b a bx ax x f ,(1)(2 ++=为实数),?? ?<->=时)(当 时) 当0)(0)(()(x x f x x f x F (1)若0)1(=-f 且对任意实数x 均有0)(≥x f 成立,求)(x F 表达式; (2)在(1)的条件下,当][2,2-∈x 时,kx x f x g -=)()(是单调函数,求实数k 的 取值范围; (3)设0>m ,0,>+为偶函数,求证:0)()(>+n F m F . 6.已知定义域为[]1,0的函数同时满足以下三条:①对任意的∈x []1,0,总有0)(≥x f ;②1)1(=f ;③若,1,0,02121≤+≥≥x x x x 则有)()()(2121x f x f x x f +≥+成 立.解答下列各题: (1)求)0(f 的值; (2)函数12)(-=x x g 在区间[]1,0上是否同时适合①②③?并予以证明; (3)假定存在∈0x []1,0,使得∈)(0x f []1,0且()[]00x x f f =,求证00)(x x f =.

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

最新高中数学导数专题讲义(答案版)

导数专题讲座内容汇总 目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (52) 导数专题四、零点问题 (76) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (168) 导数专题七、特殊值法判定超越函数的零点问题 (187) 导数专题八、避免分类讨论的参变分离和变换主元 (198) 导数专题九、公切线解决导数中零点问题 (211) 导数专题十、极值点偏移问题 (216) 导数专题十一、构造函数解决导数问题 (224)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论,讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域); 第四步、(列表)根据第五步的草图列出()'f x ,()f x 随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为或恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较; ()0f x '≥()0f x '≤

2020版高考数学二轮复习 专题二 函数与导数 专题对点练9 2.1~2.4组合练 文

专题对点练9 2.1~2.4组合练 (限时90分钟,满分100分) 一、选择题(共9小题,满分45分) 1.设函数f(x)=则f(f(e))=() A.0 B.1 C.2 D.ln(e2+1) 2.设a=60.4,b=log0.40.5,c=log80.4,则a,b,c的大小关系是() A.a0,a≠1)的图象如图所示,则下列结论成立的是 () A.a>1,c>1 B.a>1,01 D.0f(x2) 8.已知函数f(x)为偶函数,当x≤0时,f(x)为增函数,则“f”的() A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件 9.已知f(x)=若不等式f(x-1)≥f(x)对一切x∈R恒成立,则实数a的最大值为 () A.B.-1 C.-D.1 二、填空题(共3小题,满分15分) 10.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是. 11.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则的最小值为. 12.(2018天津,文14)已知a∈R,函数f(x)=若对任意x∈[-3,+∞),f(x)≤|x|恒成立,则a的取值范围是. 三、解答题(共3个题,满分分别为13分,13分,14分) 13.(2018全国Ⅰ,文21)已知函数f(x)=a e x-ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥时,f(x)≥0. 14.已知函数f(x)=e x-ax2-2x(a∈R). (1)当a=0时,求f(x)的最小值; (2)当a<-1时,证明不等式f(x)> -1在(0,+∞)上恒成立. 15.(2018浙江,22)已知函数f(x)=-ln x. (1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln 2; (2)若a≤3-4ln 2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

相关主题