搜档网
当前位置:搜档网 › 时间复杂度例题

时间复杂度例题

时间复杂度例题
时间复杂度例题

1、设n为正整数,试确定下列各程序段中前置以记号@的语句的频度。评析:频度≠时间复杂度

注意:(1)、(2)、(3)三个程序段中任何两段都不等效(即k和i的终值不相同

)

此程序实质上是一个双重循环,对每个y(>0)值,@语句从x=91开始直到x=101都执行,共执行11次,其中10次是执行x++。

2、假设n为2的乘幂,并且n>2,试求下列算法的时间复杂度及变量count的值(以n的函数形式表示)。

int Time(int n){

count=0;x=2;

while(x

x*=2;count++;

}

return(count)

}

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

最大公约数的三种算法复杂度分析时间计算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) {

r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

算法的时间复杂度计算

for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,

下面我们就这个问题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1)f(n)=O(g(n)) (2)g(n)=O(f(n)) (3)h(n)=O(n^1.5) (4)h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,

最大公约数的三种算法复杂度分析时间计算

理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 一、上机目的及容 1.上机容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。

根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

数据结构时间复杂度的计算

数据结构时间复杂度的计算 for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问 题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中 频度最大的语句频度。

渐进时间复杂度的计算

时间复杂度计算 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n) 这就是传说中的大O函数的原始定义。 用大O来表述 要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。 算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。而度量一个程序的执行时间通常有两种方法。 一、事后统计的方法 这种方法可行,但不是一个好的方法。该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。 二、事前分析估算的方法 因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。因此人们常常采用事前分析估算的方法。 在编写程序前,依据统计方法对算法进行估算。一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素: (1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。 一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。 1、时间复杂度 (1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

算法时间复杂度计算示例

算法时间复杂度计算示 例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本计算步骤? 示例一:? (1) int num1, num2; (2) for(int i=0; i

时间复杂度的计算

时间复杂度计算 学习数据结构时,觉得时间复杂度计算很复杂,怎么也看不懂,差不多三年之后,还是不懂,马上就要找工作了,赶紧恶补一下吧: 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n)

求时间复杂度的方法

求时间复杂度的方法 1.求和法 当算法中语句的执行次数与某一变量有直接关系,而该变量的变化起止范围又较为明确,则可以利用求和公式得出最大的语句频度f(n),再对其取数量级(阶)即可。 例1有算法如下: ①for(i=1;i<=n;i++)②for(j=1;j<=n;j++)③++x; 解:以上算法中频度最大的是语句③,它的执行次数跟循环变量i和j有直接关系,因此其频度可以通过求和公式求得: 所以,该算法的时间复杂度为平方阶,记作T(n)=O(n2)。例2有一算法如下: ①for(i=1;i<=n;i++)②for(j=1;j<=i;j++)③for(k=1;k<=j;k++)④++x; 解:以上算法中频度最大的是语句④,其频度可以通过求和公式求得: 所以,该算法的时间复杂度为立方阶,记作T(n)=O(n3)。例3有如下算法: ①y=0; ②while((y+1)2<=n)③x++; 解:算法中频度最大的应该是语句③,它的执行次数与y有关,已知y初值为0,当(y+1)2>n 时循环终止,则y的最大取值应该为 n姨-1。所以语句③的频度可以通过求和公式得到: 所以,该算法的时间复杂度记作 2.假设法 在某些较为复杂的算法中,循环结构的循环次数很难直接看出,特别是当循环次数与循环体中的某些语句执行有联系时,语句频度的计算变得比较困难。此时,可以先假设循环执行次数为k次,再对算法进行分析,根据循环终止条件求出语句频度f(n),最后求出T(n)。 例4有一算法如下: x=91;y=100;while(y>0) if(x>100){x-=10;y--;}elsex++; 解:假设while循环的循环体执行k次,可以发现:k=1时,x=92,y=100k=2时,x=93,y=100k=3时,x=94,y=100 … k=10时,x=101,y=100k=11时,x=91,y=99 … k=22时,x=91,y=98 … 由分析可知,每循环11次,y的值发生一次变化,y需共变化100次。所以,f(n)=100*11=1100。则该算法的执行时间是一个与问题规模n无关的常数,它不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。因此,该算法的时间复杂度为常数阶,记作T(n)=O(1)。 例5有如下算法: i=s=0;while(s

算法时间复杂度计算示例

基本计算步骤 示例一: (1) int num1, num2; (2) for(int i=0; i

时间复杂度_复习资料(最全版)

O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0;(一次) for(i=1;i<=n;i++) (n次) for(j=1;j<=n;j++) (n^2次) sum++;(n^2次) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

O(log2n ) 2.4. i=1; ① while (i<=n) i=i*2; ② 解:语句1的频度是1, 设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n 取最大值f(n)= log2n, T(n)=O(log2n ) O(n^3) 2.5. for(i=0;i

时间复杂度

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。 渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^1.5) (4) h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆ (2)成立。与上同理。 ◆ (3)成立。与上同理。 ◆ (4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i

如何计算时间复杂度

如何计算时间复杂度 求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数的数量级; 只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 ⑶ 用大Ο记号表示算法的时间性能。 将基本语句执行次数的数量级放入大Ο记号中。 如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++; 第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为 Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环 语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和 Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。 这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

时间复杂度的计算

时间复杂度的计算 学习数据结构时,觉得时间复杂度计算很复杂,怎么也看不懂,差不多三年之后,还是不懂,马上就要找工作了,赶紧恶补一下吧: 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n)

数据结构算法时间复杂度的计算

时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O 是数量级的符号),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

各种排序的时间复杂度

排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 分类 在计算机科学所使用的排序算法通常被分类为: 计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。 记忆体使用量(以及其他电脑资源的使用) 稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。 一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。 当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。 (4, 1) (3, 1) (3, 7) (5, 6) 在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有: (3, 1) (3, 7) (4, 1) (5, 6) (维持次序) (3, 7) (3, 1) (4, 1) (5, 6) (次序被改变) 不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。 排列算法列表

数据结构时间复杂度总汇

(1)冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。 (2)选择排序 选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的。……例子说明好多了。序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不稳定的排序算法 。 (3)插入排序 插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果和插入元素相等,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变。所以插入排序是稳定的。 (4)快速排序 快速排序有两个方向,左边的i下标一直往右走(往后),当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走(往前),当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法。(不稳定发生在中枢元素和a[j]交换的时刻) (5)归并排序 归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序) 或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列。不断合并直到原序列全部排好序。相等时不发生交换。所以,归并排序也是稳定的排序算法。(6)基数排序 基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。 (7)希尔排序(shell) 希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。 (8)堆排序 我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定

求解算法的时间复杂度的具体步骤

求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数的数量级; 只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 ⑶ 用大Ο记号表示算法的时间性能。 将基本语句执行次数的数量级放入大Ο记号中。 如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++; 第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过

相关主题