搜档网
当前位置:搜档网 › 08-PE322C0-PW200AA 电源板图纸

08-PE322C0-PW200AA 电源板图纸

笔记本AC电源适配器设计方案

笔记本AC电源适配器设计方案[图] 作者:安森美半导体|出处:21IC中国电子网| 2011-05-31 16:16:17 |阅读:1182次 笔记本AC电源适配器设计方案[图],笔记本电脑的应用非常广泛,且市场规模持续快速增长。相应地,笔记本电脑电源适配器的市场也非常可观。用户 笔记本电脑的应用非常广泛,且市场规模持续快速增长。相应地,笔记本电脑电源适配器的市场也非常可观。用户往往要求高性能、小尺寸或低重量的笔记本,同时价格适宜。对于电源适配器设计人员而言,就要选择适合的控制器,用于开发高能效、集成丰富保护特性、尺寸小巧的适配器。 有利的是,安森美半导体推出了新的NCP1250/NCP1251固定频率6引脚脉宽调制(PWM)反激控制器,极佳地满足设计人员的需求,使他们能够开发高性能、高功率密度的电源转换器,用于笔记本/上网本电源适配器,并可用于DVD或机顶盒(STB)的低功率开放式电源等应用。 笔记本电脑电源适配器要求 从大多数用户的使用情况来看,笔记本电脑有相当的时间内会处在轻载或待机条件下。与提高25%、50%、75%或100%负载条件下的能效相比,降低极低负载条件甚至是待机条件下的能耗及提升能效更具挑战性。这就要求电源控制器具备极佳的轻载或待机能耗性能。 此外,用于笔记本的AC-DC适配器也要求具备以下几种保护特性: .短路保护(SCP):必须能够承受输出持续短路而不会损坏。当故障消失时,适配器必 须能够从保护模式下恢复,并重新提供额定功率。 .过压保护(OVP):在环路被破坏的情况下,如光耦合器损坏或TL431分压网络受到影响,适配器必须立即停止工作,并在用户重新启动适配器前保持在此状态。 .过温保护(OTP):如果适配器的温度超过某个温度值,适配器就存在损坏的风险。为了避免出现这种情况,就需要使用热传感器来持续监测温度,并在温度超过设计人员设定的限制值的情况下,适配器就持续关闭。当用户重新启动电源且温度下降时,适配器复位。 .过功率保护(OPP):对某些电源而言,重要的是在最坏条件下——如负载消耗的电流过大,最大输出电流保持在受控状态,而不会实际出现短路。 NCP1250/1关键特性及功能解析 NCP1250/1是采用极小的6引脚TSOP封装的固定频率PWM控制器。除了尺寸极小,还提供即便是其它更高端控制器可能都不具备的众多优势。在最简单的应用(5个功能引脚)中,NCP1250/1非常合适于设计紧凑、保护功能减至最少的离线电源。由于还有第6个多功能引

戴尔笔记本电脑电源适配器电路原理浅析与维修

戴尔笔记本电脑电源适配器电路原理浅析与维修 近日修了几台戴尔笔记本电脑PA-12系列HA65NS2-00型电源适配器,版本号REV A01。其标称输入电压为100~240V(50-60Hz).输出电压为直流19.5V,输出电流为3.34A,额定输出功率65W。戴尔Latitude、lnsipron 系列笔记本电脑均可使用该电源适配器,社会保有量较大。 HA65NS02-00型电源适配器大量使用了表面安装器件,如图1所示。 由于元器件密度高、工作电压高、电流大,发生故障的几率较大。若没有电路原理图维修相当困难。这里给出根据实物绘出的电路原理图(见图2),浅析其工作原理,给出两个维修实例。图2中:器件编号与实物一致,贴片电容未标注容量,电阻R12和R18阻值为实测值(缺省标注数值的电阻单位为欧姆,缺省标注数值的电容单位为微法)。 一、电路组成与主要元器件作用 1.电磁干扰抑制电路与整流滤波电路L1、R1A、R1B、CXl、L2组成差模和共模低通滤波器,通常称作电磁干扰抑制电路(EMI),用来抑制开关电源产生的电磁干扰;BDl和C1组成桥式全波整流滤波电路,为直流/直流变换电路提供平滑的直流电源(主电源)。 2.直流/直流变换电路 集成电路IC1及外围元器件、功率场效应开关管Ql、开关变压器T1等构成直流/直流变换电路。ICl是HA65NS02-00电源适配器的核心器件,采用SOP-8封装,顶部有两行标记,一行为“1D07N25",一行为"5528"。在查阅了大量资料后排除了NCPl207、LD7575等 芯片,最终确认该芯片为富士电机(Fuji Electric)生产的FA5528。FA5528是采用CMOS制程的电流模式脉宽调制控制芯片,典型工作电流仅1.4mA。该芯片额定工作频率60kHz,轻载时自动降低工作频率,图3是FA5528的内部电路框图。 电阻R5A、R5D、c5和D1构成消尖峰电路。用来削除开关管导通与夹断时T1初级绕组产生的高压尖峰脉冲(用来保护开关管Q1)。遇Q1击穿故障时,应检查消尖峰电路。D2和R1构成IC1的启动电路。启动电流大约7mA。IC1启动后,芯片启动电路关闭,改由辅助电源供电,启动电路电流降至251uA左右。开关变压器T1-1、T1-2绕组、R7、D3、R8、C3、C10和R4组成18V辅助电源为ICI提供电能。开关管Q1源极与高压地之间的电阻R18和R14为开关电源过载保护取样电阻。当流经过载保护电阻的峰值电流大于IC1内部设定的保护阀值电平时,IC1内部过载保护比较器翻转关闭脉宽调制器输出.功率场效应开关管Q1夹断,达到保护目的。 3.输出整流滤波电路 开关变压器T1A、T1B绕组产生的低压脉冲电压,经共阴极双肖特基二极管D31A整流、C21A~C21C滤波后,产生平滑的+19.5V电源供电脑使用。电阻R21和电容C21组成的网络用来吸收开关变压器产生的尖峰脉冲,保护整流器件。高亮度发光二极管LED和电阻R13相串用来指示电源适配器工作状态。 4.输出电压稳压控制电路 线性光电耦合器PH1和精密并联型可调整稳压器IC32及其外围元器件与IC1内部误差放大器、脉宽控制电路共同构成输出电压稳压控制电路。 由于IC32的存在,PHI②脚的电位是恒定的,当+19.5V电压变化时。PH1内部发光二极管的发光强度发生变化,PH1内部光电三极管集电极和发射极间的电压UCE随之发生变化,UCE的变化经ICI内部误差放大器放大后,调

USB电源适配器的电路保护方案

USB电源适配器的电路保护方案 -------AEM科技应用工程师郭田青 随着当今社会人们手中的手机、平板电脑等智能手持设备功能的不断升级强大,娱 乐和个性化的应用也使得设备的电池的续航能力成为其中的一个死角。现实生活中我们可 能经常会看到我们周边的朋友随身带个移动电源,没有随身电源就只能随时找地方对设备 充电了。因此电源适配器作为标配产品一直成了人们的必需品。 以苹果手机的USB电源适配等为代表的小型化适配器越来越受人亲睐,越来越多的电路元器件的SMD小型化封装让以往常见的电源充电器能够做到更加的小巧玲珑,集美观与便 携于一体。本文从内部电路重要的安规器件——保险丝的应用角度,说明AEM科技推出的创新型SMD 250VAC FUSE——MF2410系列适应潮流,如何布局在这类小尺寸 AC/DC电源适配器上的交流应用,并如何做到我们倡导的“该断时及时断,不该断是不能断,时时保障安全!”的要求呢。 作为一款UMF通用模块型保险丝,必须让工程师在设计初考虑满足下述要求。 一、结构上最大限度满足小尺寸电源适配器对器件的小体积要求 以USB power Adapter为例,在这个层面上,结构限制了内部元件的体积,例如硬币大小的PCB面积也让SMD元件成了工程师的首选。 图1 整体设计的PCB面积均如硬币大小,可以让外观做到迷你型。 作为安规元件的保险丝,MF2410通用模块保险丝满足了上面的小体积和SMD工艺的需求。相对于传统保险丝的尺寸,MF的体积小优势十分明显。 我们来看看市面上常用的几种保险丝尺寸大小比例:

表1 常见保险丝尺寸比较 MF2410 6.1mm 2.5mm 2.2mm 15.3mm 图2 可以看出MF 通用模块保险丝最大限度满足对体积的要求。 二、适合回流焊与波峰焊的SMT工艺 从生产工艺上讲,AEM 的MF保险丝材料与结构独具特点,这种SMT生产工艺不单省却了不少人工与辅材成本,根据我们对采用SMD fuse的客户原因调查,插件的引脚弯折加工导致fuse本体坏也是其中一种原因。 其次,由于电源电路插件的元件必不可少,因此生产工厂有采用波峰焊焊接的方式,保险丝需要承受波峰焊锡高温,与业界其它SMD陶瓷保险丝相比,AEM 的UMF通用模块式保险丝以环氧树脂为基体,电镀通孔的连接方式使熔丝与端头形成可靠的电连接和机械连接,不存在端头焊接受热脱帽现象,耐高温的能力突出。 图3 满足波峰焊、回流焊或手工焊的焊接工艺

笔记本电源适配器维修心得

前段时间教研室一个同学拜托我维修了一个笔记本电源,说下我的维修心得。 1、用工具撬开电源外壳(一般笔记本电源都是胶粘上的,没有用螺丝固定),取出屏蔽罩 跟电源。 2、观察电路有无明显坏掉部位,结果没有,测试保险管好着,上电,绿色指示灯不亮,说 明无输出电压,测量整流滤波电容两端电压为310V左右,与理论的√2倍220符合,说明整流电路没坏,断电,电容上电压仍然保持(310V相当危险,被电了一下,但没仔细分析,忽略了这一个非常关键的点,后边再说),观察主控芯片为KA3842,百度其PDF,测试各引脚,发现5脚与7脚短路,与实际不符,分析原因,百度电路原理图,如图下图所示(图片来自中电网),分析短路原因:芯片坏了或者外围电路短路,本人更希望是外围电路的问题,因为外围都是些电阻电容的东西,实验室有现成的不用去买。 短路原因罗列为:○15脚为地,7脚为电源,电容C5是否击穿,焊掉电容,测试电容好着。○2检测跟7脚相连的另一条电路(R2,二极管,与绕组34),放掉二极管的一端,测试二极管跟电阻发现没问题,再量5,7引脚仍然短路,初步判定为第三种情况。○3 KA3842坏了,没办法焊掉KA3842(焊掉两脚的电容比八脚芯片可容易得多,这是我希望是○1○2的另一个原因),再测果然是它坏了。 3、查出是KA3842的7脚5脚短路,分析其损坏原因,KA3842为一PWM输出芯片,百度 故障多出现7,5,6三脚短路,原因是MOS管6N60损坏(图中是7N60,本人维修的是6N60,电流6A,耐压600V),GD短路导致高压进入6脚,焊掉MOS管,测量MOS 管貌似好的(第一次测有点拿不准,后来事实证明确实没坏,测试方法为:看封装,123脚分别为GDS,用表笔将3个脚短路一下,万用表打到蜂鸣档,红黑表笔分别接S和D,测得有一个电阻,反接为断开;红笔接G,黑表笔接D,给G极一个电压,再次测量SD 发现两个都导通,最初导通的那个电阻减小差不多一半,证明管子好的。) 4、去电子市场买了KA3842,顺便问了一下有无6N60,店主说有7N60,我想7N60是7A, 600V可以替换,顺便也买了一个(前面说了第一次测有点拿不准,去一次电子市场不容易就顺便买了个,以防万一)。买回之后将3842与6N60都替换了,测量有无短路(非

联想笔记本电脑电源适配器原理分析与检修

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 联想笔记本电脑电源适配器原理分析与检修 该电源适配器(型号为 92P1107),输入电压为交流 1OOV~240V 市电;输出直流 20V;最大输出功率有 90W 和 65W 两种。 其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制器;具有过流、欠压等保护控制功能;工作电压为 7V~34V;最高工作频率可达 500MHz;启动电流仅需 1mA。 该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。 ②脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。 ③脚为过流检测输入端,当该脚的电压高于 1V 时,禁止驱动脉冲的输出。 ④脚为 RT/CT 定时电阻和电容的公共接入端,用于产生锯齿振荡波。 ⑤脚为接地端。 ⑥脚为脉宽调制信号输出端。 ⑦脚为工作电压输入端(7V>Vi≤34V)。 ⑧脚为内部基准电压(VREF=5V)输出端。 根据实物绘制了其电路原理图如附图所示。 经比较,两种输出功率的电原理图完全相同,只是过流保护电 1/ 7

路取样电阻 R20~R23 的取值以及 20V 直流电压输出滤波电容C11 及 C12 的容量有所不同。 一、整流滤波电路交流市电经 1A 保险管 F1 及电容 C1 进入整流电路,BD1 全桥整流后,经主滤波电容 C7 滤波,在 C7 两端得到约 300V 的直流电压,作为适配器的工作电压。 该适配器的输入电路只有一个高频滤波电容 C1

电源适配器拆解

电源适配器的拆解 笔记本电脑电源适配器的上下盖为注塑封装或是用强力胶粘合的,不用任何螺丝,所以一般只能借助暴力来破解。不过,只要方法得当,拆解后的电源适配器完全可以恢复原样,不仔细观察几乎看不出有拆开过的痕迹。 拆解工具:电工刀、锤子、螺丝刀、电烙铁、美工刀等。 把电源适配器横向侧放置在白纸上,用电工刀刀刃沿电源适配器上下盖之间的缝隙切入,然后用锤子敲击电工刀刀背(如图1),使电工刀从适配器上下盖之间切进去。在适配器上下盖之间的缝隙的不同位置,用电工刀的刀尖沿缝隙划动,当上下盖的某一部位首先裂开后,把刀尖深入,然后慢慢分开适配器的上下盖。 如图2为打开外壳的电源适配器,可以看到适配器电路外面包有铜质的屏蔽层,用美工刀割开屏蔽层上的胶带纸,再用电烙铁焊开屏蔽层与内部电路板连接的两个焊点(如图3),即可取下屏蔽层。

屏蔽层与电路板之间还隔有一层较厚的硬质塑料膜(如图4),再用美工刀割开后,即可见到电路板的“庐 山真面目”了(如图5)。 图5电源适配器结构剖析 接下去,我们来了解一下电源适配器的内部构造。图6为电源适配器内部“特写”,电路主要部件都已用圆圈标出,部件名称及功能如下: 图6 1. 压敏电阻,其功能是当外界电压过高时,压敏电阻阻值迅速变得很小,与压敏电阻串联的保险丝被熔断,从而保护其他电路不被烧坏。 2. 保险丝,规格为2.5A/250V,当电路中的电流过大时,保险丝会熔断以保护其他元件。 3. 电感线圈(又称扼流圈),主要功能是降低电磁干扰。 4. 整流桥,规格为D3SB,作用是把220V交流电变为直流电。 5. 滤波电容,规格为180μF/400V,作用是滤除直流电中的交流纹波,使电路工作更可靠。

联想笔记本电脑电源适配器原理分析与检修

该电源适配器(型号为92P1107),输入电压为交流1OOV~240V市电;输出直流20V;最大输出功率有90W 和65W两种。其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制 器;具有过流、欠压等保护控制功能;工作电压为7V~34V;最高工作频率可达500MHz;启动电流仅需1mA。 该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。②脚是反馈电压输入端,作为内部误差放大器的 反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。 ③脚为过流检测输入 端,当该脚的电压高于1V时,禁止驱动脉冲的输出。④脚为RT/CT定时电阻和电容的公共接入端,用于产生锯齿振 荡波。⑤脚为接地端。⑥脚为脉宽调制信号输出端。⑦脚为工作电压输入端(7V>Vi≤34V)。 ⑧脚为内部基准电压 (VREF=5V)输出端。 根据实物绘制了其电路原理图如附图所示。经比较,两种输出功率的电原理图完全相同,只是过流保护电路取 样电阻R20~R23的取值以及20V直流电压输出滤波电容C11及C12的容量有所不同。 一、整流滤波电路 交流市电经1A保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约 300V的直流电压,作为适配器的工作电压。该适配器的输入电路只有一个高频滤波电容C1

进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。 二、启动与稳压电路 由整流滤波电路产生的300V电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏 极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。在电路加电 的瞬间,300V直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V以上时,U1的⑧脚输出5V基准电压 Vref,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替 导通、截止的工作状态。开关变压器T1的初级①~②绕组流过高频脉冲电流,同时由于交流互感的作用,在开关变 压器T1的次级③~④绕组两端产生的感应电压经R16限流、D3整流、C8滤波后得到UI持续工作所需的电压。脉宽调 制信号的频率由R11和C3决定(本电路中.R11为5.6k,C3为4700pF),其振荡频率大约为70kHz。T1的⑤~⑥ 绕组产生的感应电压经D2整流,C11和C12滤波,输出20V的直流电压。 稳压电路由精密可调基准电压集成器件U3(KA431Z)、电阻R26、R27、R28、R29、电容C以及光电耦合器 U2(PC817)组成。输出的20V电压经R27与R28、R29分压后加到U3的①脚。当由于某种原因导致输出20V电压升 高时,U3的①脚电压升高,③脚的电压降低,导致流过光耦合器U2内部发光二极管的电流增大,使U2内部发光二 极管的亮度增强。U2内部光电三极管的内阻降低,将U1的①脚电位拉低,使U1内误差放大器的输出电压降低,经 内部自动控制电路的作用,自动将U1的⑥脚输出的脉冲宽度调窄,使开关管Q1的导通时间缩短,经开关变压器的 作用,使适配器输出的电压自动降低。当适配器输出20V电压变低时,其稳压过程与上述相反,将输出电压调整到 稳定的20V。 三、保护电路 1.功率管的保护:该保护电路由R13~R15、C6及D1组成,接在开关变压器T1的初级①~②绕组间。由于功 率开关管Q1交替工作在饱和导通与截止状态之间,当开关管由饱和导通变为截止状态时,在①~②绕组之间会产生瞬 间反向尖峰高电压,如果没有泄放电路,功率管的漏(D)、源(S)极很可能会被高压击穿。通过该保护电路可以将反 向尖峰电压吸收掉,从而起到保护功率开关管Q1的作用。 2.过流保护:电路由R20~R23、R18组成,当功率管的电流突然增大时,电阻R20~R23并联后的一端对热地 端电压升高,该电压经R18加到U1的③脚,当该电压高于1V时,U1(3843)内部控制电路控制⑥脚停止输出脉宽调 制信号,使Q1截止,保护功率管不因电流过大而被热击穿。

笔记本电脑电源适配器原理分析与检修

笔记本电脑电源适配器原理分析与检修 输入电压为交流1OOV~240V 市电;输出直流20V ;最大输出功率有90W 和65W 两种。其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制器;具有过流、欠压等保护控制功能;工作电压为7V ~34V ;最高工作频率可达500MHz ;启动电流仅需1mA 。 该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。②脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。③脚为过流检测输入端,当该脚的电压高于1V 时,禁止驱动脉冲的输出。④脚为RT/CT 定时电阻和电容的公共接入端,用于产生锯齿振荡波。⑤脚为接地端。⑥脚为脉宽调制信号输出端。⑦脚为工作电压输入端(7V>Vi≤34V)。⑧脚为内部基准电压(VREF=5V )输出端。 根据实物绘制了其电路原理图如附图所示。经比较,两种输出功率的电原理图完全相同,只是过流保护电路取样电阻R20~R23的取值以及20V 直流电压输出滤波电容C11及C12的容量有所不同。 一、整流滤波电路 交流市电经1A 保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约300V 的直流电压,作为适配器的工作电压。该适配器的输入电路只有一个高频滤波电容C1进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。 二、启动与稳压电路 由整流滤波电路产生的300V 电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。在电路加电的瞬间,300V 直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V 以上时,U1的⑧脚输出5V 基准电压Vref ,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替导通、截止的工作状态。开关变压器T1的初级①~②绕组流过高频脉冲电流,同时由于交流互感的作用,在开关变压器T1的次级③~④绕组两端产生的感应电压经R16限流、D3整流、C8滤波后得到UI 持续工作所需的电压。脉宽调制信号的频率由R11和C3决定(本电路中.R 11为5.6k ,C3为4700pF ),其振荡频率大约为70kHz 。T1的⑤~⑥绕组产生的感应电压经D2整流,C11和C12滤波,输R20- R 23 ● R8

笔记本电脑电源适配器的剖析与维修

笔记本电脑电源适配器的剖析与维修 探访动力之源――笔记本电脑电源适配器的剖析与维修电源适配器是笔记本电脑工作的动力之源,里面是个高品质的开关电源,其工作原理与彩电等家电中的开关电源是一样的,它的作用是为笔记本电脑提供稳定的低压直流电(一般在12~19V之间)。笔记本的电源适配器均为全密封小体积设计,而其消耗的功率一般可达35~90W,所以内部温度较高,特别是在炎热的夏天,触摸工作中的电源适配器会有烫手的感觉。正因为如此,电源适配器的故障率相对笔记本电脑其它部件来说还是比较高的。电源适配器损坏后,购买一个全新的要花费数百元,从二手市场淘得也需百多元。其实,许多电源适配器损坏并不严重,稍懂一些电路知识的用户都可尝试修理,本文将以IBM的“肉骨头”电源适配器(16V、4.5A)为例,介绍其拆解与简易维修,供大家参考。电源适配器的拆解笔记本电源适配器的上下盖为注塑封装或是用强力胶粘合的,不用任何螺丝,所以一般只能借助暴力来破解。不过,只要方法得当,拆解后的电源适配器完全可以恢复原样,不仔细观察几乎看不出有拆开过的痕迹。拆解工具:电工刀、锤子、螺丝刀、电烙铁、美工刀等。Step1:把电源适配器横侧放置在白纸上,用电工刀刀刃沿电源适配器上下盖之间的缝隙切入,然后用锤子敲击电工刀刀背(图1),使电工刀从适配器上下盖之间切进去。以上方法在适配器上下盖之间的缝隙的不同位置多,然后用电工刀的刀尖沿上下盖之间的缝隙划动几圈,当上下盖的某一部位首先裂开后,把刀尖深入,然后慢慢分开适配器的上下盖。 Step2:图2为打开外壳的电源适配器,可以看到适配器电路外面包有铜质的屏蔽层,用美工刀割开屏蔽层上的胶带纸,再用电烙铁焊开屏蔽层与内部电路板连接的两个焊点(图3),即可取下屏蔽层。

戴尔笔记本电脑电源适配器电路原理浅析与维修

近日修了几台戴尔笔记本电脑PA-12系列HA65NS2-00型电源适配器,版本号REV A01.其标称输入电压为100~240V(50-60Hz)。输出电压为直流19.5V,输出电流为3.34A,额定输出功率65W.戴尔Latitude、lnsipron系列笔记本电脑均可使用该电源适配器,社会保有量较大。 HA65NS02-00型电源适配器大量使用了表面安装器件,如图1所示。 由于元器件密度高、工作电压高、电流大,发生故障的几率较大。若没有电路原理图维修相当困难。这里给出根据实物绘出的电路原理图(见图2),浅析其工作原理,给出两个维修实例。图2中:器件编号与实物一致,贴片电容未标注容量,电阻R12和R18阻值为实测值(缺省标注数值的电阻单位为欧姆,缺省标注数值的电容单位为微法)。 一、电路组成与主要元器件作用 1.电磁干扰抑制电路与整流滤波电路

L1、R1A、R1B、CX1、L2组成差模和共模低通滤波器,通常称作电磁干扰抑制电路(EMI),用来抑制开关电源产生的电磁干扰;BDl和C1组成桥式全波整流滤波电路,为直流/直流变换电路提供平滑的直流电源(主电源)。 2.直流/直流变换电路 集成电路IC1及外围元器件、功率场效应开关管Ql、开关变压器T1等构成直流/直流变换电路。ICl 是HA65NS02-00电源适配器的核心器件,采用SOP-8封装,顶部有两行标记,一行为"1D07N25",一行为"5528".在查阅了大量资料后排除了NCPl207、LD7575等芯片,最终确认该芯片为富士电机(Fuji Electric)生产的FA5528.FA5528是采用CMOS制程的电流模式脉宽调制控制芯片,典型工作电流仅1.4mA.该芯片额定工作频率60kHz,轻载时自动降低工作频率,图3是FA5528的内部电路框图。 电阻R5A、R5D、c5和D1构成消尖峰电路。用来削除开关管导通与夹断时T1初级绕组产生的高压尖峰脉冲(用来保护开关管Q1)。遇Q1击穿故障时,应检查消尖峰电路。D2和R1构成IC1的启动电路。启动电流大约7mA.IC1启动后,芯片启动电路关闭,改由辅助电源供电,启动电路电流降至251uA 左右。开关变压器T1-1、T1-2绕组、R7、D3、R8、C3、C10和R4组成18V辅助电源为ICI提供电能。开关管Q1源极与高压地之间的电阻R18和R14为开关电源过载保护取样电阻。当流经过载保护电阻的峰值电流大于IC1内部设定的保护阀值电平时,IC1内部过载保护比较器翻转关闭脉宽调制器输出。功率场效应开关管Q1夹断,达到保护目的。 3.输出整流滤波电路 开关变压器T1A、T1B绕组产生的低压脉冲电压,经共阴极双肖特基二极管D31A整流、C21A~C21C 滤波后,产生平滑的+19.5V电源供电脑使用。电阻R21和电容C21组成的网络用来吸收开关变压器产生的尖峰脉冲,保护整流器件。高亮度发光二极管LED和电阻R13相串用来指示电源适配器工作状态。 4.输出电压稳压控制电路 线性光电耦合器PH1和精密并联型可调整稳压器IC32及其外围元器件与IC1内部误差放大器、脉宽控制电路共同构成输出电压稳压控制电路。 由于IC32的存在,PHI②脚的电位是恒定的,当+19.5V电压变化时。PH1内部发光二极管的发光强度发生变化,PH1内部光电三极管集电极和发射极间的电压UCE随之发生变化,UCE的变化经ICI内

手机充电器电源适配器原理

手机充电器电源适配器原理 这个电路有稳压和限流功能,正好做LED驱动电源。磁芯改为EE19,线圈的匝数不知道怎么数,准备估计着多试试几次。另外查了一下,EE19功率是10W(50KHZ),功率应该够了吧。 220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF 电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管 13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。 由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管 C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在

140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003 的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。

两级式开关电源适配器方案研发之PFC设计

两级式开关电源适配器方案研发之PFC设计 笔记本电脑的开关电源适配器新产品研发工作,是目前国内电子工程师们的主要研发方向之一,也是应用新技术速度最快的研发领域之一,新产品的更新速度非常快。在今天和明天的干货分享中,我们将会为各位工程师们分享一种新颖的两级式笔记本电脑开关电源适配器设计方案,希望通过本文的分享,为大家的研发工作带来一定帮助。 设计原理 在本文所提出的开关电源适配器设计方案中,我们采用的是比较新颖的两级式设计思路,适配器的前级功率因数校正采用Boost变换器,这样的选择能够有效提高低输入电压时的变换效率,其PFC级采用变输出电压的方法,其输出电压跟随输入电压变化。而后级DC-DC变换器则选择采用两路反激变换器交错并联,通过这一方式能够减小其输入和输出电流纹波,同时采用同步整流技术,以进一步提高变换效率。

PFC级工作原理 上图中,图1分别给出了我们所设计的这一开关电源适配器的主功率电路图,以及Boost变换器电感电流临界连续模式下的主要波形图。其中,图1(a)为提出的新型两级式变换器的主功率电路图。从图1(a)中可以看到,该方案中,Boost变换器采用电感电流临界连续模式的控制方式,这种控制方式的优点是二极管零电流关断没有反向恢复的问题,同时具有功率因数高的优势,且原边开关管能够保持零电流开通。 在PFC级的设计中,我们所采用的Boost变换器处于电感电流临界连续模式下工作时,其主要波形如上图中的图1(b)所示。在一个开关周期内,当电感电流iLB为零时,则二极管DB关断,此时开通开关管SB,iLB由零开始线性增加。当它达到整流桥输出母线的电压采样信号时,关断SB,DB开通,iLB由最大值线性下降到零。在输入电压的1/2周期内,由多个开关周期组成。在每个开关周期内,iLB的平均值跟随整流桥输出电压,因此iLB的平均值跟踪整流桥输出电压波形,由此实现PFC的功能。 在图1所设计的这一主功率电路图中,当输出功率相同时,输入电压低,相应的输入电流有效值较大。而当低输入电压时,Boost变换器的主要损耗是整流桥的导通损耗和开关管的导通损耗。根据Boost变换器的电压输入输出关系Vo=Vin/(1-D)可知,当输入电压固定时,输出电压越低,占空比越小,因此开关管导通损耗越小。为了提高输入电压低时的效率,我们可以将输出电压降低。因此,针对PFC级输入电压范围宽(90-265Vac)的特点,采用变输出电压的控制方式,在该控制方式下,输入电压与输出电压的关系如下图图2(a)所示。

电源适配器常见故障和维修

电源适配器常见故障和维修 日常中我们经常接触到电源适配器,在使用过程中时常会遇到一些问题,比如常见的接触不良、电压不稳定或者保险烧坏等故障的情况,那么我们该如何检查与排除呢 正规电源适配器上都有标示着功率,输入输出电压和电流量等指标的一个铭牌。值得注意的是输入电压范围。一般来说,输入电压为110V-240V的电源适配器则可以全球通用,适合所有国家及地区。 电源适配器的常见故障及维修 一、线路故障 线路故障,包括电源线损坏不通电、接触口氧化接触不良等情况。重点检查输入线、输出线是否通电。若是线路故障,可通过更换电源线等方式解决。 二、输出电压过低 以下为引起输出电压低的主要原因: 1、开关电源负载短路故障(尤其是 DC/DC 变换器短路或性能不良等) ,此时,首先断开开关电源电路的所有负载,检查是开关电源电路故障还是负载电路有故障。如果断开负载电路而电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 2、输出电压端滤波电容或整流二极管失效等,可以通过替换法进行判断。 3、开关管的性能下降,导致开关管无法正常导通,使电源的内阻增加,负载能力下降。 4、开关变压器不良,不仅造成输出电压下降,同时造成开关管激励不足从而损坏开关管。

5、300V 滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。 三、输出电压过高 输出电压过高一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如 TL431、光耦、电源控制芯片等电路共同构成的闭合控制环路,其中任何一个零件出现问题都会造成输出电压升高。 四、保险烧坏或炸掉 主要检查整流桥、各二极管、开关管以及300伏上的大滤波电容等部位。导致保险烧、发黑,也可能是抗干扰电路出问题引起。 尤其要注意的是:因开关管击穿导致保险烧,通常会烧坏电源控制芯片和电流检测电阻。热敏电阻也很容易和保险一起被烧坏。 电源适配器的常见故障及维修就讲到这里,另外,我们要注意电源适配器日常的维护和保养,这样能减少故障的发生,也能有效的延长使用寿命。 五、保险管正常,无输出电压 保险管正常,无输出电压表明开关电源未工作或进入了保护状态。第一步要检查电源控制芯片的启动脚的启动电压的数值,若无启动电压或者启动电压过低,则检查启动脚外接的元件及启动电阻是否漏电。 若电源控制芯片正常,可经上述监测迅速查到故障所在。若有启动电压,则测量控制芯片的输出端在开机瞬间是否存在高、低电平的跳变,如若无跳变,说明控制芯片损坏、外围振荡电路元件损坏或保护电路存在故障,通过替换控制芯片、检查外围元件,逐一进行检查;若在跳变,多数情况为为开关管不良或损坏。

基于Fairchild KA5M0365R的低成本开关电源适配器设计

基于Fairchild KA5M0365R的低成本开关电源适配器设计 摘要:采用开关电源(SMPS)方式制成的电源适配器能充分实现小型、轻量和高效率的性能特点。介绍一种采用飞兆半导体生产的KA5M0365R单片开关电源芯片的低成本、高性能AC-DC适配器的设计,着重介绍该适配器的方案考虑、电路结构与PCB设计等问题。关键词:开关电源;适配器;设计 引言 目前,国内大多数DVD生产厂家已把主产品从传统台式DVD转到了便携式DVD。因此需要大批能实现AC到DC转换的电源适配器,不仅在体积、重量、性能等方面有较高要求,同时在成本价格方面也有一定限制。采用开关电源(SMPS)方式制成的电源适配器能充分实现小型、轻量和高效率的性能特点,而采用飞兆半导体(Fairchild)生产的单片开关电源芯片KA5M0365R制成的24W开关电源适配器更是在成本价格方面具有明显的优势。 为某企业开发的24W开关电源适配器的基本要求是:①形式:插墙型开关电源适配器;②输入:90~240VAC、50/60Hz;③输出:12VDC、2A;④有短路、过载保护;⑤通过UL认证;⑥外型:75mm×50mm×35mm。 方案考虑 常规SMPS系统均采用PWM控制IC和场效应管(FET)作为开关,现在大多采用单片IC。这些单片IC针对各种功率级别和应用进行了优化,一般分为双芯片式单片IC和单芯片式单片IC两类。双芯片式单片IC内部包括控制器芯片和MOSFET芯片,而单芯片式单片IC内部仅有一个芯片。 设计时的一般考虑是:在高功率应用时选择双芯片方案,而在低功率应用时则选择单芯片方案,高低功率的分界点在15~20W左右。飞兆半导体生产的KA5M0365R是双芯片器件,其价格便宜,成为方案设计时的首选单片SMPS电路。 掌上DVD用开关电源适配器要求有很高的保护功能,KA5M0365R同时具有过载保护、过压保护、过流保护、欠压保护和过热保护特性。KA5M0365R的主要功能与特点是: 图1KA5M0365R内部框图图2KA5M0365R引脚排列图 1脚-接地端(GND)2脚-漏极输出端(DRAIN) 3脚-VCC端(VCC)4脚-反馈端(FB) ①内部框图(见图 1); ②采用TO-220F-4L封装(见图2); ③漏源反压650V;④25℃连续漏极直流电流额定值3A,100℃连续漏极直流电流额定值2.4A; ⑤内置精密振荡工作频率67KHz;⑥低启动电流(典型值100μA);⑦电流限制调整功能;⑧过流保护;⑨过压保护;⑩内置过热保护功能;⑾低电压闭锁;⑿内置高压SenseFET;⒀自动重启功能。 电路结构 图3适配器的电路构成

一款USB通用电源适配器原理分析

一款USB通用电源适配器原理分析 本USB通用电源是JM5540型电源适配器,输出插口采用的是标准的USB接口.既可为采用USB接口供电的数码设备直接提供电源,还可以通过转接线作充电器。其输人参数是:100-240VAC、0.2A、50/60Hz;输出参数是:5.5V、0AADC。实绘该适配器电路图见附图所示,工作原理简述如下。 220 VAC通过保险电阻RO,R1后加至由D1-D4构成的整流桥上.整流后得到约3 00VDC再经Cl滤波后分成两路,一路经过TR1的N1线圈加至T1的集电极,另一路贝iJ经过R2加至T1的基极,为T1的启动提供一个基极电流,于是在T1的集电极上就有电流产生,通过开关变压器TR1的藕合作用、在其反馈线圈N3上产生和N1线圈上同向的感应电压,这个电压通过C3,R3加到TI的基极并使基极电流增大。T1很快饱和导通,集电极电流也随之迅速增加。当T1集电极电流增大到使R7上的压降足以使T2饱和导通时,则T2导通,降低了TI的基极电压,使T1退出饱和导通并趋于截止。这时TR1的N1线圈感应出下正上负的电压,这个电压又使其反馈线圈N3上也产生和N1线圈上同向的感应电压。可是由于C3上的电压不能突变,T1仍处于截止状态。此时C3和反馈线圈N3上叠加电压通过R3、T2的基极、R9,R7放电。然后T1的基极电压又为正值并继续增加直至其

又饱和导上述过程使电路产生振荡R9用于减小前后级的影和导通过改变其阻值可以改变开关电路的振荡频率。次级线圈N2感应出的电压经D7整流、C5滤波再经限流电阻R15后输出5.5V的电压。其中R6、9014LED 1(红)用作指示电路LED1点亮表明电路工作正常电路主要是由U1、U2及T2构成,其中R18,R19构成取样电路;D6,C4为U1提供工作电源;U2为稳压电路提供基准电压,约2.49 V左右。当由于某种原因使输出电压升高时,R16上的压降增加,电流增大,但是U2提供的基准电压并不变化,则内部发光管的电流也增加,发光增强,U1内部光敏管的导通随之增强,从而使T2基极电位上升,导通也增强,迫使T1的基极电压下降,降低其饱和导通时间以达到降低输出电压的目的;反之,当输出电压降低时控制过程正好相反。该电源适配器的保护电路主要有以下几部分:一是由R4,C2,D5构成的反峰吸收回路,用于消除N1线圈的反峰电压,以保护T1;二是由RO(1f/2W),R1(ldZ/2W)R R15(2.7dZ/2W)构成的输人输出过流保护,以保护整个电路;三是咒的双重作用.即平时用作稳压电路的最终调罄元件.而当输出电压过高时T2完全饱和导通使T1截止停止工作,以保护T1不被过流烧毁。 ----(横线内容缺少,等待研究后补上,由于这种电路常遇到所以先刊登出来,有清楚的网友也可以留言解析)线接人充电电池吟T3导通,LED2(绿)发关---随---的增加,T3的基极电位也在不断上升.最终邓截止,绿色发光管LED2熄灭,表示充电已完成,要尽快把电源适配器断开,以免由该电源适配器常见故障是RO,R1及R巧中的一个或几个损坏。这时千万不能一换了之,更不能图省事只用短路线代换损坏的RO或R1,否则损失会更大。应该对D1-C1、T1、T2、R7等元件作全面检查,确认无故障后再更换损坏的保险电阻。再就是的击穿短路,这时往往伴随着TI损坏,RO或R1中的一个或两个全部烧毁。因为当击穿短路后,此时稳压电路已不起作用,次级线圈N2感应出的高频电压直接经C7交流短路,T1严重过载必然损坏,RO或R1也就不可能幸免,检修时也要注意。

相关主题