搜档网
当前位置:搜档网 › matlab实现的ID3 分类决策树 算法

matlab实现的ID3 分类决策树 算法

matlab实现的ID3 分类决策树 算法
matlab实现的ID3 分类决策树 算法

function D = ID3(train_features, train_targets, params, region)

% Classify using Quinlan's ID3 algorithm

% Inputs:

% features - Train features

% targets - Train targets

% params - [Number of bins for the data, Percentage of incorrectly assigned samples at a node]

% region - Decision region vector: [-x x -y y number_of_points]

%

% Outputs

% D - Decision sufrace

[Ni, M] =

size(train_features); %·μ??DDêyNioíáDêyM

%Get parameters

[Nbins, inc_node] = process_params(params);

inc_node = inc_node*M/100;

%For the decision region

N = region(5);

mx = ones(N,1) * linspace

(region(1),region(2),N); %linspace(?eê??μ£????1?μ£??a????êy)

my = linspace (region(3),region(4),N)' * ones(1,N);

flatxy = [mx(:), my(:)]';

%Preprocessing

[f, t, UW, m] = PCA(train_features,

train_targets, Ni, region);

train_features = UW * (train_features -

m*ones(1,M));

flatxy = UW * (flatxy - m*ones(1,N^2));

%First, bin the data and the decision region data [H, binned_features]=

high_histogram(train_features, Nbins, region); [H, binned_xy] = high_histogram(flatxy, Nbins, region);

%Build the tree recursively

disp('Building tree')

tree = make_tree(binned_features,

train_targets, inc_node, Nbins);

%Make the decision region according to the tree disp('Building decision surface using the tree') targets = use_tree(binned_xy, 1:N^2, tree, Nbins, unique(train_targets));

D = reshape(targets,N,N);

%END

function targets = use_tree(features, indices, tree, Nbins, Uc)

%Classify recursively using a tree

targets = zeros(1,

size(features,2)); %size(features,2)·μ??featu resμ?áDêy

if (size(features,1) == 1),

%Only one dimension left, so work on it

for i = 1:Nbins,

in = indices(find(features(indices) == i));

if ~isempty(in),

if isfinite(tree.child(i)),

targets(in) = tree.child(i);

else

%No data was found in the training set for this bin, so choose it randomally

n = 1 +

floor(rand(1)*length(Uc));

targets(in) = Uc(n);

end

end

end

break

end

%This is not the last level of the tree, so:

%First, find the dimension we are to work on

dim = tree.split_dim;

dims= find(~ismember(1:size(features,1), dim)); %And classify according to it

for i = 1:Nbins,

in = indices(find(features(dim, indices) == i));

targets = targets + use_tree(features(dims, :), in, tree.child(i), Nbins, Uc);

end

%END use_tree

function tree = make_tree(features, targets,

inc_node, Nbins)

%Build a tree recursively

[Ni, L] = size(features);

Uc = unique(targets);

%When to stop: If the dimension is one or the number of examples is small

if ((Ni == 1) | (inc_node > L)),

%Compute the children non-recursively

for i = 1:Nbins,

tree.split_dim = 0;

indices = find(features == i);

if ~isempty(indices),

if(length(unique(targets(indices))) == 1),

tree.child(i) =

targets(indices(1));

else

H =

hist(targets(indices), Uc);

[m, T] = max(H);

tree.child(i) = Uc(T);

end

else

tree.child(i) = inf;

end

end

break

end

%Compute the node's I

for i = 1:Ni,

Pnode(i) = length(find(targets == Uc(i))) / L; end

Inode = -sum(Pnode.*log(Pnode)/log(2));

%For each dimension, compute the gain ratio impurity delta_Ib = zeros(1, Ni);

P = zeros(length(Uc), Nbins);

for i = 1:Ni,

for j = 1:length(Uc),

for k = 1:Nbins,

indices = find((targets == Uc(j)) & (features(i,:) == k));

P(j,k) = length(indices);

end

end

Pk = sum(P);

P = P/L;

Pk = Pk/sum(Pk);

info = sum(-P.*log(eps+P)/log(2));

delta_Ib(i) =

(Inode-sum(Pk.*info))/-sum(Pk.*log(eps+Pk)/log( 2));

end

%Find the dimension minimizing delta_Ib

[m, dim] = max(delta_Ib);

%Split along the 'dim' dimension

tree.split_dim = dim;

dims = find(~ismember(1:Ni, dim));

for i = 1:Nbins,

indices = find(features(dim, :) == i); tree.child(i) = make_tree(features(dims, indices), targets(indices), inc_node, Nbins); end

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

数据挖掘——决策树分类算法 (1)

决策树分类算法 学号:20120311139 学生所在学院:软件工程学院学生姓名:葛强强 任课教师:汤亮 教师所在学院:软件工程学院2015年11月

12软件1班 决策树分类算法 葛强强 12软件1班 摘要:决策树方法是数据挖掘中一种重要的分类方法,决策树是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性的测试,其分支代表测试的结果,而树的每个 叶结点代表一个类别。通过决策树模型对一条记录进行分类,就是通过按照模型中属 性测试结果从根到叶找到一条路径,最后叶节点的属性值就是该记录的分类结果。 关键词:数据挖掘,分类,决策树 近年来,随着数据库和数据仓库技术的广泛应用以及计算机技术的快速发展,人们利用信息技术搜集数据的能力大幅度提高,大量数据库被用于商业管理、政府办公、科学研究和工程开发等。面对海量的存储数据,如何从中有效地发现有价值的信息或知识,是一项非常艰巨的任务。数据挖掘就是为了应对这种要求而产生并迅速发展起来的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用的信息,提取的知识表示为概念、规则、规律、模式等形式。 分类在数据挖掘中是一项非常重要的任务。 分类的目的是学会一个分类函数或分类模型,把数据库中的数据项映射到给定类别中的某个类别。分类可用于预测,预测的目的是从历史数据记录中自动推导出对给定数据的趋势描述,从而能对未来数据进行预测。分类算法最知名的是决策树方法,决策树是用于分类的一种树结构。 1决策树介绍 决策树(decisiontree)技术是用于分类和预测 的主要技术,决策树学习是一种典型的以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性判断从该节点向下的分支,在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。 把决策树当成一个布尔函数。函数的输入为物体或情况的一切属性(property),输出为”是”或“否”的决策值。在决策树中,每个树枝节点对应着一个有关某项属性的测试,每个树叶节点对应着一个布尔函数值,树中的每个分支,代表测试属性其中一个可能的值。 最为典型的决策树学习系统是ID3,它起源于概念学习系统CLS,最后又演化为能处理连续属性的C4.5(C5.0)等。它是一种指导的学习方法,该方法先根据训练子集形成决策树。如果该树不能对所有给出的训练子集正确分类,那么选择一些其它的训练子集加入到原来的子集中,重复该过程一直到时形成正确的决策集。当经过一批训练实例集的训练产生一棵决策树,决策树可以根据属性的取值对一个未知实例集进行分类。使用决策树对实例进行分类的时候,由树根开始对该对象的属性逐渐测试其值,并且顺着分支向下走,直至到达某个叶结点,此叶结点代表的类即为该对象所处的类。 决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3,C4.5,PUBLIC,

决策树分类算法

决策树分类算法 决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。 1.决策树的组成 决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。图1就是一棵典型的决策树。 图1 决策树 决策树的每个节点的子节点的个数与决策树所使用的算法有关。例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。允许节点含有多于两个子节点的树称为多叉树。 下面介绍一个具体的构造决策树的过程,该方法

是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。 ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。 首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。 当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为: n p n log n p n n p p log n p p )n ,p (I 22++-++- = 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。以属性A 作为树根所要求的期望信息可以通过加权平均得到

决策树算法的原理与应用

决策树算法的原理与应用 摘要:在机器学习与大数据飞速发展的21世纪,各种不同的算法成为了推动发 展的基石.而作为十大经典算法之一的决策树算法是机器学习中十分重要的一种算法。本文对决策树算法的原理,发展历程以及在现实生活中的基本应用进行介绍,并突出说明了决策树算法所涉及的几种核心技术和几种具有代表性的算法模式。 关键词:机器学习算法决策树 1.决策树算法介绍 1.1算法原理简介 决策树模型是一种用于对数据集进行分类的树形结构。决策树类似于数据结 构中的树型结构,主要是有节点和连接节点的边两种结构组成。节点又分为内部 节点和叶节点。内部节点表示一个特征或属性, 叶节点表示一个类. 决策树(Decision Tree),又称为判定树, 是一种以树结构(包括二叉树和多叉树)形式表达的 预测分析模型,决策树算法被评为十大经典机器学习算法之一[1]。 1.2 发展历程 决策树方法产生于上世纪中旬,到了1975年由J Ross Quinlan提出了ID3算法,作为第一种分类算法模型,在很多数据集上有不错的表现。随着ID3算法的 不断发展,1993年J Ross Quinlan提出C4.5算法,算法对于缺失值补充、树型结 构剪枝等方面作了较大改进,使得算法能够更好的处理分类和回归问题。决策树 算法的发展同时也离不开信息论研究的深入,香农提出的信息熵概念,为ID3算 法的核心,信息增益奠定了基础。1984年,Breiman提出了分类回归树算法,使 用Gini系数代替了信息熵,并且利用数据来对树模型不断进行优化[2]。 2.决策树算法的核心 2.1数据增益 香农在信息论方面的研究,提出了以信息熵来表示事情的不确定性。在数据 均匀分布的情况下,熵越大代表事物的越不确定。在ID3算法中,使用信息熵作 为判断依据,在建树的过程中,选定某个特征对数据集进行分类后,数据集分类 前后信息熵的变化就叫作信息增益,如果使用多个特征对数据集分别进行分类时,信息增益可以衡量特征是否有利于算法对数据集进行分类,从而选择最优的分类 方式建树。 如果一个随机变量X的可以取值为Xi(i=1…n),那么对于变量X来说,它 的熵就是 在得到基尼指数增益之后,选择基尼指数增益最大的特征来作为当前步骤的 分类依据,在之后的分类中重复迭代使用这一方法来实现模型的构造。 3. 决策树算法的优缺点 3.1决策树算法的优点[3] (1)计算速度快,算法简单,分类依据清晰 (2)在处理数据时,有很高的准确度,同时分类结果清晰,步骤明朗。 (3)可以处理连续和种类字段 (4)适合高维数据 3.2决策树算法的缺点 (1)决策树算法可以帮助使用者创建复杂的树,但是在训练的过程中,如

决策树算法总结

决策树研发二部

目录 1. 算法介绍 (1) 1.1.分支节点选取 (1) 1.2.构建树 (3) 1.3.剪枝 (10) 2. sk-learn中的使用 (12) 3. sk-learn中源码分析 (13)

1.算法介绍 决策树算法是机器学习中的经典算法之一,既可以作为分类算法,也可以作为回归算法。决策树算法又被发展出很多不同的版本,按照时间上分,目前主要包括,ID3、C4.5和CART版本算法。其中ID3版本的决策树算法是最早出现的,可以用来做分类算法。C4.5是针对ID3的不足出现的优化版本,也用来做分类。CART也是针对ID3优化出现的,既可以做分类,可以做回归。 决策树算法的本质其实很类似我们的if-elseif-else语句,通过条件作为分支依据,最终的数学模型就是一颗树。不过在决策树算法中我们需要重点考虑选取分支条件的理由,以及谁先判断谁后判断,包括最后对过拟合的处理,也就是剪枝。这是我们之前写if语句时不会考虑的问题。 决策树算法主要分为以下3个步骤: 1.分支节点选取 2.构建树 3.剪枝 1.1.分支节点选取 分支节点选取,也就是寻找分支节点的最优解。既然要寻找最优,那么必须要有一个衡量标准,也就是需要量化这个优劣性。常用的衡量指标有熵和基尼系数。 熵:熵用来表示信息的混乱程度,值越大表示越混乱,包含的信息量也就越多。比如,A班有10个男生1个女生,B班有5个男生5个女生,那么B班的熵值就比A班大,也就是B班信息越混乱。 基尼系数:同上,也可以作为信息混乱程度的衡量指标。

有了量化指标后,就可以衡量使用某个分支条件前后,信息混乱程度的收敛效果了。使用分支前的混乱程度,减去分支后的混乱程度,结果越大,表示效果越好。 #计算熵值 def entropy(dataSet): tNum = len(dataSet) print(tNum) #用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] #获取标签 if curL not in labels.keys(): labels[curL] = 0 #如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 #将标签记录个数加1 #此时labels中保存了所有标签和对应的个数 res = 0 #计算公式为-p*logp,p为标签出现概率 for node in labels: p = float(labels[node]) / tNum res -= p * log(p, 2) return res #计算基尼系数 def gini(dataSet): tNum = len(dataSet) print(tNum) # 用来保存标签对应的个数的,比如,男:6,女:5 labels = {} for node in dataSet: curL = node[-1] # 获取标签 if curL not in labels.keys(): labels[curL] = 0 # 如果没有记录过该种标签,就记录并初始化为0 labels[curL] += 1 # 将标签记录个数加1 # 此时labels中保存了所有标签和对应的个数 res = 1 # 计算公式为-p*logp,p为标签出现概率

算法杂货铺分类算法之决策树Decisiontree精编版

算法杂货铺分类算法之决策树D e c i s i o n t r e e 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

爱LINUX 也爱WIN 爱.NET 也爱PHP 爱倒腾各种数学算法理论爱在深夜边喝咖啡边CODING 最爱与大家分享我算不上程序员也不是码农我只是个学生仅此而已 2010-09-19 16:30 by EricZhang(T2噬菌体), 2344 visits, , , 3.1、摘要 在前面两篇文章中,分别介绍和讨论了与两种分类算法。这两种算法都以为基础,可以对分类及决策问题进行概率推断。在这一篇文章中,将讨论另一种被广泛使用的分类算法——(decision tree)。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树更加适用。 3.2、决策树引导 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅?

母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑(声明:此决策树纯属为了写文章而YY的产物,没有任何根据,也不代表任何女孩的择偶倾向,请各位女同胞莫质问我^_^):上图完整表达了这个女孩决定是否见一个约会对象的策略,其中绿色节点表示判断条件,橙色节点表示决策结果,箭头表示在一个判断条件在不同情况下的决策路径,图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。

相关主题