搜档网
当前位置:搜档网 › 水的动力粘滞系数η、粘滞系数比η_rη_20

水的动力粘滞系数η、粘滞系数比η_rη_20

水的动力粘滞系数η、粘滞系数比η_rη_20

水的动力粘滞系数η、粘滞系数比ηr η20

粘滞系数表

实验二液体黏度测量 一、实验目的 掌握用奥氏黏度计测量液体黏度的原理和方法。 二、实验器材 奥氏黏度计、支架、玻璃水槽、温度计,秒表、量筒、吸球、酒精、蒸馏水。 图2–1 黏度测量的实验装置 三、仪器描述 用奥氏黏度计测量液体黏度的装置如图2–1所示,U 形玻璃管为奥氏黏度计,a 管为粗管,下端有一玻璃泡b ,c 为毛细管。上端有玻璃炮 d ,d的上下各有一刻痕m 和 n ,式(2–3)中的体积V0就是指两刻痕间的体积,G为铅锤,T 为温度计, A 槽内盛满。 四、实验原理 根据流体力学知识,可以证明泊肃叶公式在非分水平均匀圆管中的形式为 (2–1) 式中Q为流量,、分别为流体的密度和黏度系数,g为重力加速度,R为管半径,△P,△h分别是长度为L的管两端的压强差和高度差,用奥氏黏度计测量液体黏度系数时,它的毛细管两端的压强近似等于大气压,所以其压强差

△P0,式(2–1)可写成 (2–2) 本实验用比较法测量液体的黏度系数,在时间t0内,已知黏度系数为,密度为0的液体(称为标准液体)流过黏度计毛细管的体积为 (2–3) 同样实验条件下,让与V0同体积的己知密度为,黏度系数为的待测液体流过黏度计毛细管,所需时间为 t , 则 (2–4) 由式(2–3)和(2–4)可得 (2–5) 式(2–5)为用奥氏黏度计测量液体黏度系数的理论依据,在实验中测出时间 t0、t和对应温度T0、 T ,由表2–3 、表2–4、表2–5分别查出0、0、,根据式(2–5)求出待测液体的黏度系数。 五、实验步骤 1.实验前先将奥氏黏度计用蒸馏水洗干净,再用酒精冲洗。 2.用量筒取一定量(6ml)的酒精,从 a 管口装入黏度计中,装好酒精的黏度计放入插有温度计的恒温水槽中,黏度计的上部玻璃泡 d 应完全浸入水中.并固定在支架上,调整黏度计使之处于垂直状态

落球法测量液体粘滞系数

液体粘滞系数的测量(落球法) 在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数。测定液体粘滞系数的方法有多种,落球法(也称斯托克斯Stokes 法)是最基本的一种。它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。 【实验目的】 1. 观察液体的内摩擦现象,根据斯托克斯公式用落球法测量液体的粘滞系数; 2. 掌握激光光电计时仪的使用方法; 3. 了解雷诺数与斯托克斯公式的修正数; 4.掌握用落球法测粘滞系数的原理和方法; 5.测定当时温度下变压器油的粘滞系数。 【实验前准备】 1.自学斯托克斯公式及雷诺数; 2.粗略阅读讲义,了解大致的实验过程; 3.认真阅读讲义,明确实验原理,写出自己设计的实验方案; 4.再次阅读讲义,提出自己的疑问或可能的其他实验方案,如下落时间还有其他方法测量吗等; 5.进一步熟悉并掌握某些测量器具的用法(如游标卡尺、螺旋测微计、秒表等)。 6.设计实验数据记录表格; 7.复习不确定度计算方法并推导出本实验要用的不确定计算公式。 【自学资料】 1. 如何定义粘滞力(内摩擦力)?粘滞系数取决于什么? 当液体稳定流动时,流速不同的各流层之间所产生的层面切线方向的作用力即为粘滞力(或称内摩擦力)。其大小与流层的面积成正比,与速度的梯度成正比,即: dx dv S F ? ?=η (1) 式中比例系数η即为该液体的粘滞系数。 粘滞系数决定于液体的性质和温度。 2. 实验依据的主要定律是什么?它需要什么条件? 主要依据斯托克斯定律,即半径为r 的圆球,以速度v 在粘滞系数为η的液体中运动时,圆球所受液体的粘滞阻力大小为: rv F πη6= (2) 它要求液体是无限广延的且无旋涡产生。 3. 实验的简要原理是什么? 圆球在液体中下落时,受到重力、浮力和粘滞阻力的作用,由斯托克斯定律知粘滞阻力与圆球的下落速度成正比,当粘滞阻力与液体的浮力之和等于重力时,圆球所受合外力为零,圆球此后将以收尾速度匀速下落。由此得到:

落球法测量液体粘滞系数

落球法测量液体粘滞系数 Revised by BLUE on the afternoon of December 12,2020.

落球法测量液体粘滞系数 各种实际液体具有不同程度的粘滞性,当液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。 液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 【实验目的】 1.学习用激光光电传感器测量时间和物体运动速度的实验方法 2.用斯托克斯公式采用落球法测量油的粘滞系数(粘度) 3.观测落球法测量液体粘滞系数的实验条件是否满足,必要时进行修正。【实验原理】 1.当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V是小球体积,ρ是液体mg(m为小球质量)、液体作用于小球的浮力gV 密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 = 6 rv Fπη (1)

落球法测量液体的粘滞系数

落球法测量液体的粘滞系数 、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法。 、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时, 它受到三个铅直方向的力: 液体作用于小球的浮力 :'gV ( V 为小球体积,匸为液体密度)和粘滞阻力 球运动方向相反)。如果液体无限深广,在小球下落速度 v 较小的情况下, F rv ( 1) 图1 液体的粘滞系数测量装置 小球的重力mg 、 F (其方向于小

上式称为斯托克斯公式,式中 为液体的粘滞系数,单位是 Pa s , r 为小球的半径。 (3) 斯托克斯定律成立的条件有以下5个方面: 1 )媒质的不均一性与球体的大小相比是很小的; 2) 球体仿佛是在一望无涯的媒质中下降; 3) 球体是光滑且刚性的; 4)媒质不会在球面上滑过; 5)球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所 推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大, 但是随着下落速度的增大,阻力也随 之增大。最后,三个力达到平衡,即: mg = QgV 6二 rv 于是小球开始作匀速直线运动,由上式可得: (m-Vjg 6~vr — i d 令小球的直径为d ,并用m d 3Q ,v ,r 代入上式得: 6 t 2 (厂 - Jgd 2t 18l 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行 修正。测量表达式为: ________ 1 _______ (1 叱)(1 吨) 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 其中L 为小球材料的密度, l 为小球匀速下落的距离, t 为小球下落I 距离所用的时间。 其中D 为容器的内径, H 为液柱高度。

液体粘滞系数的测定

实验19 液体粘滞系数的测定 【实验目的】 掌握奥氏粘度计和沉降法测定液体粘滞系数的原理和方法。 【实验仪器】 奥氏粘度计、量筒、烧杯、停表、移液管、洗耳球、小钢球、游标卡尺、温度计(公用)、甘油、稀释甘油、水。 实验之一 用奥氏粘度计测稀释甘油的粘滞系数 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,秒内流出圆管的液体体积为 (1) 式中为管道的的截面半径,为管道的长度,为流动液体的粘滞系数, 为管道两端液体的压强差。如果先测出、、、各量,则可求得 液体的粘滞系数 (2) 1),采用比较法进行测量。取一种已知粘滞系数的液体和一种待测粘滞系数的液体,设它们的粘滞系数分别为 和,令同体积的两种液体在同样条件下,由于 重力的作用通过奥氏粘度计的毛细管DB ,分别测出他们所需的时间和,两种液体的密度分别为、。则 (3) (4) 式中为粘度计两管液面的高度差,它随时间连续变 化,由于两种液体流过毛细管有同样的过程,所以由(3)式和(4)式可得 (5) 如测出等量液体流经DB 的时间和,根据已知数、、,即可求出待测液体的粘滞系数。式中水的粘滞系数见附表一,实验温度下水的密度 见附表二。 【实验内容】 t t L P R V ηπ84?=R L ηP ?V R P ?L t VL P R 84?=πη0ηx ηV 1t 2t 1ρ2ρh g VL t R ?= 11 408ρπηh g VL t R x ?= 22 48ρπηh ?221 10ρρ ηηt t x =0 1 122ηρρη?=t t x 1t 2t 1ρ2ρ0η0η1ρ

(1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。 (2) 用移液管经粘度计粗管端注入6毫升水。用洗耳球将水压入细管刻度C 以上,用手指压住细管口,以免液面下降。 (3) 松开手指,液面下降,当夜面下降至刻度C 时,启动秒表,在液面经过刻度D 时停止秒表,记下时间。 (4) 重复步骤(2)、(3)测量3次,取平均值。 (5) 用稀释甘油清洗粘度计两次。 (6) 取6毫升的稀释甘油作同样实验,求出时间的平均值。 【数据记录与处理】 根据公式(5)求出稀释甘油溶液的粘滞系数。 【注意事项】 (1)(1)使用粘度计时要小心,不要同时控住两管,以免折断。 (2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直。 (3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内。 实验之二 用沉降法测定甘油粘滞系数 【实验原理】 当小球在无限大的粘滞液体中以不大的速度直线下降时,作用于小球粘滞阻力大小可由斯托克斯定律给出 式中为液体的粘滞系数,为圆球的半径,为圆球下降的速度。 当小圆球在粘滞液体中垂直下降时,除受粘滞阻力以外,还要受到重力和浮力的作用,如果以和分别表示圆球的质量和密度,表示液体密度,那么这三个力的大小可用下述各式计算 由此可列出小球运动的动力学方程 1t 1t 2t T rV F πη6=ηr V mg f m ρρ'g r mg ρπ334 =g r f ρπ'=334 rV F πη6=ma f F mg =--

落球法测量液体的粘滞系数

落球法测量液体的粘滞 系数 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

落球法测量液体的粘滞系数 一、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法。 二、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V为小球体积,ρ为液体密度)和粘滞阻力F(其方mg、液体作用于小球的浮力gV 向于小球运动方向相反)。如果液体无限深广,在小球下落速度v较小的情况下,有: =(1) 6 rv Fπη s Pa?,r为小球的半径。 1 2 3 4)媒质不会在球面上滑过; 5)球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大,但是随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即: 于是小球开始作匀速直线运动,由上式可得:

令小球的直径为d ,并用ρπ 36d m = ,t l v =,2 d r =代入上式得: (2) 其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正。测量表达式为: (3) 其中D 为容器的内径,H 为液柱高度。 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 1) 调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点。 2) 将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线。 3) 收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变。 4) 在实验架上放上钢球导管。小球用酒精清洗干净,并用滤纸吸干。 5) 将小球放入钢球导管,看其能否阻挡光线,如不能,则适当调整激光器位置。 2. 用温度计测量油温,在全部小球下落完后再测一次油温,取其平均值。 3. 测量上下两激光束之间的距离l 。 4. 将小球放入钢球导管,当小球落下,阻挡上面的红色激光束,秒表开始记时,到小球落到阻挡下面的红色激光束时,停止记时,读出下落时间,重复6次。 5. 计算蓖麻油的粘滞系数。 五、数据记录和数据处理 表格一

用毛细管法测定液体的粘滞系数

用毛细管法测定液体的粘滞系数 自然界中,一切实际流体(气体、液体)都具有一定的粘 滞性,这可以由流体抗拒形变的内摩擦而显示出来。众所周 知,作用于静止流体及运动中的所谓理想流体任一表面上的 力只有法向力(即正压力);但是对于实际流体而言,当相邻 两层流体各以不同的定向速度运动时,由于流体分子的相互 作用,就会产生平行于接触面的切向力。如图26-1所示, 运动快的流层对运动慢的流层以拉力f ',运动慢的流层则对运动快的流层施以阻力f ,这一对力被称为内摩擦力,或粘滞力。 实验表明,对于给定的流体,作用于接触面积为ds 的相邻两流层上的粘滞力f ,系与垂直于s d 方向上的速度梯度y u d /d 以及接触面积s d 呈正比,其方向与运动方向相反,即: s y u f d d d ?=η 式就是决定流体内摩擦力大小的牛顿粘滞定律。其中,比例系数η是由流体本身性质决定的、反应流体粘滞性大小的物理量,称为粘滞系数(又称动力粘度,简称粘度),其单位为:帕·秒(s Pa ?)。s Pa 1?相当于速度梯度为1s 1-时,作用在2m 1接触面积上的力为N 1的流体所具有的粘度,即: 2m s N 1s Pa 1-??=?。 不同流体具有不同的粘度,同一种流体在不同温度下的粘度也很不相同,而且流体的粘度还与压强有关,但不甚显著。气体的粘度很小,且于2/1T 成比例。由于液体分子间距比气体小千倍以上,层间分子的相互作用力成为产生内摩擦的主要原因,所以其粘度比气体大4210~10倍。且其粘度随温度的升高几乎按指数规律地减小,有经验公式: ()c b a -+=θηθ 其中,θη为流体在C θ时的粘度,c b a ,,为因液体种类或温度范围而异的常数。对水而言:当252.43,60070.0==b a 及5423.1=c 时,温度在C 100~C 0 范围内,与精确 实验结果的误差不大于%40.0。因此, 式可以用来验证我们的实验结果。 测定流体的粘度可以有很多种方法,诸如:(1)用各种毛细管粘滞计、 (2)旋

用落球法测量液体的粘滞系数

实验报告 实验题目: 落球法测定液体的黏 度 实验目的: 本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方 法。 实验原理: 1、 斯托克斯公式 粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度 v 很小,球的半径 r 也很小,且液体可以看成在各方向上都是无限广阔的 F 6 vr ( 1) η 是液体的粘度, SI 制中,η 的单位是 Pa s 2、 雷诺数的影响 雷诺数 R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为 v ,液 体的密度为 ρ0,粘度为 η,圆管的直径为 2r ,则 奥西思 - 果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: F 6 rv (1 3 R e 19 R e 2 ...) 16 e 1080 e 2 式中 3R e 项和 19R e 项可以看作斯托克斯公式的第一和第二修正项 16 1080 随着 R e 的增大,高次修正项的影响变大。 因 F 是很难测定的 ,利用小球匀速下落时重力、 浮力 、粘滞阻力合力等于零 ,由式(4)R e 2v r 2) 3) 3、 容器壁的影响 考虑到容器壁的影响,修正公式为 r3 3.3 )(1 R e h 16 F 6 rv (1 2.4 1080 R e ...) 4) 4、 η 的表示

...) ( 5) 实验内容 : 1、利用三个橡皮筋在靠近量筒下部的地方, 分出两个长度相等的区域, 利用秒表 测 量小球通过两段区域的时间, 调整橡皮筋的位置, 并保持两段区域等长, 寻找两 次测量时间相等的区域,测出两段区域总长度 l 。 2、选用大、中、小三种不同直径的小球进行实验。 3、用螺旋测微器测定 6 个同类小球的直径,取平均值并计算小球直径的误差。 4、将一个小球在量筒中央尽量接近液面处轻轻投下,使其进入液面时初速度为零, 5、分别测出 6 个小球通过匀速下降区 l 的时间 t ,然后求出小球匀速下降的速度。 6、用相应的仪器测出 R 、h 和 ρ0,各测量三次及液体的温度 T ,温度 T 应取实验开 始时的温度和实验结束时的温度的平均值。应用式( 7)计算 η 0。 7、计算雷诺数 R e ,并根据雷诺数的大小,进行一级或二级修正。 4 r 3( 0)g 6 rv(1 2.4 r )(1 3.3r )(1 3 R e 19 R e 2 3 0 R h 16 e 1080 e 0 )gd 2 η 1 ( η 18 d d 3 19 2 18v(1 2.4 )(1 3.3 )(1 R e R e 2 ...) 2R 2h 16 1080 6) a. 当 R e <时,可以取零级解,则式( 6)就成为 0 )gd 2 1( 18 v(1 2.42d R )(1 3.32d h ) 7) 即为小球直径和速度都很小时,粘度 η 的零级近似值 时,可以取一级近似解,式( 6)就成为 它可以表示成为零级近似解的函数: 0 3 dv 0 0 16 0 还必须考虑二级修正,则式( 6)变成 c.当 R e >时, 2 21 1[1 1 270 19 (dv 0 )2] 1 8) 9)

实验四液体粘滞系数的测定南京农业大学物理

实验四液体粘滞系数的测定 一、实验目的: 1.用落球法测量不同温度下蓖麻油的粘滞系数; 2.了解PID温度控制的原理; 3.练习用秒表测量时间,用螺旋测微器测量直径。 二、实验器材: 变温粘度测量仪,ZKY-PID温控实验仪,秒表,螺旋测微器,游标卡尺、钢球若干。 三、实验原理: 当固体在液体内部运动或液体内各部分之间有相对运动时,接触面之间存在内摩擦力,阻碍固体与液体或液体之间的相对运动,这种性质称为液体的粘滞性,液体的内摩擦力称为粘滞力。粘滞力的大小与接触面面积以及接触面处的速度梯度成正比,比例系数η称为粘滞系数(或粘度)。 对液体粘滞性的研究在流体力学、化学化工、医疗、水利等领域都有广泛的应用,例如在用管道输送液体时要根据输送液体的流量、压力差、输送距离及液体粘滞系数,设计输送管道的口径。 测量液体粘滞系数可用落球法、毛细管法、转筒法等方法,其中落球法适用于测量粘滞系数较高的液体,本实验采用落球法测量液体的粘滞系数。 粘滞系数的大小取决于液体的性质与温度,温度升高,粘滞系数将迅速减小。例如对于蓖麻油,在室温附近温度每改变1?C,粘滞系数值改变约10%。因此,测定液体在不同温度的粘滞系数有很大的实际意义,欲准确测量液体的粘滞系数,必须精确控制液体温度。 1.落球法测定液体的粘滞系数 一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式: (1) (1)式中d为小球直径。由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后(参见附录的推导),所受3力达到平衡,小球将以v0匀速下落,此时有: (2) (2)式中ρ为小球密度,ρ0为液体密度。由(2)式可解出粘滞系数η的表达式: (3) 本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:

实验2落球法测定液体的粘滞系数

实验二落球法测定液体的粘滞系数 液体(或气体)粘滞系数是表征液体性质的一个物理量,是流体力学中经常接触的问题之一。在航空航天,船舶研究,水利水力等学科中很有意义。粘滞系数的测定方法有多种,现仅介绍其中的一种—落球法。 这是根据Stokes定律和方法设计的实验,Stokes是英国著名的物理学家和数学家。实验方法简单、直观,物理思想清晰明了,在误差处理上应用了合理的数学修正和推理。希望本实验能对学生们有所启发,实验不在形式的复杂和仪器的排场,而在于它的物理意义和实验思想。 实验目的 1.学习用落球法测定液体的粘滞系数。 2.了解Stokes公式的应用条件,雷诺数及修正。 实验仪器 量筒、直径2.0mm和1.5mm的小钢球、螺旋测微器、秒表、温度计和待测液体(蓖麻油)等,实验装置如图1所示。 实验原理 1.Stokes公式的简单介绍 一个在静止液体中缓慢下落的小球受到三个力的作用:重力、浮力和粘滞阻力的作用。粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度很小,球的半径也很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程出发导出著名的Stokes公式: vr fπη 6 =(1) 式中f是小球所受到的粘滞阻力,v是小球 的下落速度,r是小球的半径,η是液体的粘滞系数,它的单位是泊[p]=[0.1牛顿?秒/ 米2]。Stokes公式是由粘滞液体的普遍运动方程导出的,是在“小球在液体中下落速度很小,球的半径也很小和液体可以看成在各方向上无限广阔”三个假定条件下得到的。那么,在实验上这些条件如何体现呢?Stokes公式应作如何修正呢? 2、奥西恩-果尔斯公式 温度计 L V 2R e h0 N1 N2 图1

落球法测量液体的粘滞系数

落球法测量液体的粘滞系数 一、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理与方法。 二、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力mg 、液体作用于小球的浮力gV ρ(V 为小球体积,ρ为液体密度)与粘滞阻力F(其方向于小球运动方向相反)。如果液体无限深广,在小球下落速度v 较小的情况下,有: rv F πη6= (1) 图1 液体的粘滞系数测量装置 上式称为斯托克斯公式,式中η为液体的粘滞系数,单位就是s Pa ?,r 为小球的半径。 斯托克斯定律成立的条件有以下5个方面: 1)媒质的不均一性与球体的大小相比就是很小的; 2)球体仿佛就是在一望无涯的媒质中下降; 3)球体就是光滑且刚性的; 4)媒质不会在球面上滑过; F f P L H D

5) 球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不就是因球体运动所推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大,但就是随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即: rv gV mg πηρ6+= 于就是小球开始作匀速直线运动,由上式可得: vr g V m πρη6)(-= 令小球的直径为d ,并用ρπ 36d m = ,t l v =,2 d r =代入上式得 : 其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正。测量表达式为: 其中D 为容器的内径,H 为液柱高度。 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 1) 调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点。 2) 将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线。 3) 收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变。 4) 在实验架上放上钢球导管。小球用酒精清洗干净,并用滤纸吸干。 5) 将小球放入钢球导管,瞧其能否阻挡光线,如不能,则适当调整激光器位置。 2. 用温度计测量油温,在全部小球下落完后再测一次油温,取其平均值。

奥氏粘度计测量液体粘滞系数

奥氏粘度计测量液体粘 滞系数 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

221 10ρρηηt t x =奥氏粘度计测量液体粘滞系数 【实验目的】 掌握奥氏粘度计测定液体粘滞系数的原理和方法。 【实验仪器】 奥氏粘度计、量筒、烧杯、秒表、移液管、洗耳球、温度计、甘油、水等。 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?= (1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘 滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、 L t VL P R 84?=πη (2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘 度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液 体和一种待测粘滞系数的液体,设它们的粘滞系数分别为0η和x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥 氏粘度计的毛细管DB ,分别测出他们所需的时间1t 和2t ,两种液 体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη (3) h g VL t R x ?=22 48ρπη (4) 式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式和(4)式可得: 01122ηρρη?=t t x (5) 如测出等量液体流经DB 的时间1t 和2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。

液体粘滞系数

液体粘滞系数 一、实验内容: 1.用天平测小球的质量; 2.用螺旋测微计测量小球的直径,用游标卡尺和米尺测量玻璃管的直径及刻度线间的长度; 3.用密度计测量蓖麻油的密度。 二、实验步骤: (一)清点主要仪器 1.玻璃圆筒 ( ) 2.温度计 ( ) 3.密度计 ( ) 4.螺旋测微计 ( ) 5.游标卡尺 ( ) 6.米尺 ( ) 7.落球 ( ) 8.秒表 ( ) 9.镊子 ( ) 10.待测液 (蓖麻油 ) (二)测量 1.调节粘度仪底板上的可调螺钉,使玻璃筒轴线沿铅直方向; 2.用游标卡尺测量玻璃筒内直径R ,在圆筒油面下面7~8cm 和筒底上方7~8cm 处作标记线,用米尺测出两标记线间的距离L ; 3.用螺旋测微计测出10个小球的直径取平均值,同时测10个小球质量,求出1个球的质量; 4.用镊子夹起小球在油面中心处放下,用秒表测出小球通过两标记线的距离S 时所需的时间t ,将数据填入表①中; 5.实验前后分别测量一次油液温度,温度计的液泡应在两标记线的正中。 (三)数据表格 量筒内径 R = cm , 蓖麻油温度T = ℃ , T 末= ℃ 小球质量 10m = g , 蓖麻油密度 ρ= g/cm 3 标记线间距 L = cm , 油深 H = cm 表① (四)请老师检查数据签字 (五)请实验技术人员检查仪器签字 (六)清理仪器 (七)数据处理要求 1.计算出η及误差; 2.计算误差时可按以下进行: ()()t L d V m rv g V m 266πρπρη-=-= ∵ V =334r π , Δ(V ρ) =V ρ(ρ ρ?+?r r 3 )

∴ d d t t L L V m V m ?+?+?+-?+?=?ρρηη)( 式中V 为小球体积,v 为小球速度。

用落球法测量液体的粘滞系数

实验报告 25系05级 鄂雁祺 2006年5月24日 PB05025003 实验题目:落球法测定液体的黏度 实验目的:本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方 法。 实验原理: 1、 斯托克斯公式 粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度v 很小,球的半径r 也很小,且液体可以看成在各方向上都是无限广阔的 vr F πη6= (1) η是液体的粘度,SI 制中,η的单位是s Pa ? 2、 雷诺数的影响 雷诺数R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为v ,液体的密度为ρ0,粘度为η,圆管的直径为2r ,则 2e v r R ρη = (2) 奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: ...)1080 191631(62 +-+ =e e R R rv F πη (3) 式中16 3e R 项和1080192e R 项可以看作斯托克斯公式的第一和第二修正项。 随着R e 的增大,高次修正项的影响变大。 3、 容器壁的影响 考虑到容器壁的影响,修正公式为 ...)1080191631)(3.31)(4.21(62 +- +++=e e R R h r R r rv F πη (4) 4、 η的表示

因F 是很难测定的,利用小球匀速下落时重力、浮力、粘滞阻力合力等于零,由式(4)得 ...)1080191631)(3.31)(4.21(6)(342 03+-+++=-e e R R h r R r rv g r πηρρπ(5) η...) 1080 19 1631)(23.31)(24.21()(18 122 0+-+++-= e e R R h d R d v gd ρρ (6) a.当R e <时,可以取零级解,则式(6)就成为 ) 23.31)(24.21()(18 1 2 00h d R d v gd ++-= ρρη (7) 即为小球直径和速度都很小时,粘度η的零级近似值。 时,可以取一级近似解,式(6)就成为 ) 23.31)(24.21()(18 1 )1631(2 01h d R d v gd R e ++-= +ρρη 它可以表示成为零级近似解的函数: 00116 3 ρηηdv - = (8) c.当R e >时,还必须考虑二级修正,则式(6)变成 ) 23.31)(24.21()(18 1 )1080191631(2 022h d R d v gd R R e e ++-=- +ρρη 或 ])(2701911[212 1 012ηρηηdv + += (9) 实验内容: 1、利用三个橡皮筋在靠近量筒下部的地方,分出两个长度相等的区域,利用秒表测量小球通过两段区域的时间,调整橡皮筋的位置,并保持两段区域等长,寻找两次测量时间相等的区域,测出两段区域总长度l 。 2、选用大、中、小三种不同直径的小球进行实验。

南昌大学液体粘滞系数的测定实验报告

22110ρρηηt t x =实验三 液体粘滞系数的测定 【实验目的】 1、加深对泊肃叶公式的理解; 2、掌握用间接比较法测定液体粘滞系数的初步技能。 【实验仪器】 1.奥氏粘度计 2、铁架及试管夹 3、 秒表 4、温度计 5、量筒 6、小烧杯1个 7、洗耳球 【实验材料】 蒸馏水50ml 酒精25ml 【实验原理】 由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,t 秒内流出圆管的液体体积为 t L P R V ηπ84?=(1) 式中R 为管道的的截面半径,L 为管道的长度,η为流动液体的粘滞系数,P ?为管道两端液体的压强差。如果先测出V 、R 、P ?、L 各量,则可求得液体的粘滞系数 t VL P R 84?=πη(2) 为了避免测量量过多而产生的误差,奥斯瓦尔德设计出一种粘度计(见图1),采用比较法进行测量。取一种已知粘滞系数的液体与一种待测粘滞系数的液体,设它们的粘滞系数分别为0η与x η,令同体积V 的两种液体在同样条件下,由于重力的作用通过奥氏粘度计的毛细管DB,分别测出她们所需的时间1t 与2t ,两种液体的密度分别为1ρ、2ρ。则 h g VL t R ?=11 408ρπη(3) h g VL t R x ?= 22 48ρπη(4) 式中h ?为粘度计两管液面的高度差,它随时间连续变化,由于两种液体流过毛细管有同 样的过程,所以由(3)式与(4)式可得: 0 1 122ηρρ η?=t t x (5) 如测出等量液体流经DB 的时间1t 与2t ,根据已知数1ρ、2ρ、0η,即可求出待测液体的粘滞系数。 【实验内容与步骤】 (1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度和温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不是物体与液体间的摩擦力,而是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状和运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 是小球的直径,v 是小球的速度,η为液体粘滞系数。η就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们是重力、浮力、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力和浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ是液体的密度,ρ是小球的密度,g 是当地的重力加速度。 可见,只要测得,即可由(2)式得到液体的粘滞系数。但是注意,上述推导包括(1)、 (2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器和实验方法的设计,这些条件大多数都可以满足或近似满足(结合本实验所用仪器和实验步骤,思考

液体粘滞系数的测量

液体粘滞系数的测量 一、实验目的 根据斯托克斯公式用落球法测定洗洁精的粘滞系数 二、实验原理 当半径为r 的光滑圆球,以速度v 在均匀的无限深广的液体中运动时,若速度不大,球也很小,在液体中不产生涡流的情况下,斯托克斯指出,球在液体中所受的阻力F 为 vr F πη6= (3-1) 式中η为液体的粘度,此式称为斯托克斯公式,从上式可知,阻力F 的大小和物体的运动速度成正比例 当质量为m ,体积为v 的小球在密度为ρ的液体中下落时,作用在小球上的力有三个,即: (1)重力mg (2)液体的浮力(3)液体的粘滞阻力vr πη6。 这三个力都作用在同一铅直线上,重力向下,浮力和阻力向上。球刚开始下落时,速度v 很小,阻力不大,小球做加速下降。随着速度的增加,阻力逐渐增大,速度达一定值时,阻力和浮力之和将等于重力,那时物体运动的加速度等于零,小球开始匀速下落,此式的速度成为终极速度。由此式可得 rv g v m πρη6)-=( 将34 3r v π=,得 g rv r m πρπη6343-= (3-2) 由于液体在容器中,而不满足无限深、广的条件,这时实际测得的速度0v 和上述

式中的理想条件下的速度v 之间存在如下关系: ??? ??+??? ? ?+=h r R r v v 3.314.210 (3-3) 式中R 为盛液体圆筒的内半径,h 为筒体中液体的深度,将(3-3)代入式(3-2),得出 ??? ??+??? ? ?+??? ??-=h r R r rv g r m 3.314.2163403πρπη (3-4) 其次,斯托克斯公式是假设在无涡流的理想状态下导出的,实际小球下落时不能使这样理想状态,因此还要进行修正。已知在这时的雷诺数Re 为 ηρ 02Re rv = (3-5) 当雷诺数不甚大(一般在Re<10)时,斯托克斯公式修正为 1 2Re 108019Re 10316-?? ? ??-+=ηπv F (3-6) 则考虑此项修正后的粘度测得值0η等于 1 20Re 108019Re 1631-?? ? ??-+=ηη (3-7) 实验时,先由式(3-4)求出近似值η,用此η代入式(3-5)求出Re ,最后由式(3-6)求出最值0η。若Re 值很大时,粘滞力F 与粘质系数无关,而与液体密度有关;同时,F 不在v 、r 的一次方成正比,而是与v 、r 的平方成正比。 三、实验器材与器具 玻璃圆筒,停表,螺旋测微计,游标卡尺,物理天平,密度计,温度计,小球,镊子,漏斗,待测液体(洗洁精) 四、实验内容 实验装置如图所示,在圆筒油面下方7~8cm 和筒底上方7~8cm 处,分别设标记1N 、2N ,对1N 、2N 间距离l ,油筒半径R ,油的深度h ,选取适当仪器 会测量待测油的密度ρ用密度计去测量。 F f P L H D

落球法测量液体粘滞系数

落球法测量液体的粘滞系数实验报告 一、问题背景 液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力(或粘滞系数),它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。液体的粘滞系数和人们的生产,生活等方面有着密切的关系,比如医学上常把血粘度的大小做为人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。 二、实验目的 1.学习和掌握一些基本物理量的测量。2.学习激光光电门的校准方法。 3.用落球法测量蓖麻油的粘滞系数。 三、实验仪器 DH4606落球法液体粘滞系数测定仪、卷尺、螺旋测微器、电子天平、游标卡尺、钢球若干。四、实验原理 处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg(m为小球质量)、液体作用于小球的浮力gV ρ(V是小球体积,ρ是液体密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 (1) 上式称为斯托克斯公式,其中r是小球的半径; η称为液体的粘度,其单位是s Pa?。 小球在起初下落时,由于速度较小,受到的阻力也就比较小,随着下落速度的增大,阻力也随之增大。最后,三个力达到平衡,即 (2) 此时,小球将以 v作匀速直线运动,由(2)式可得:

(3) 令小球的直径为d ,并用'36 ρπ d m = ,t l v =0, 2 d r = 代入(3)式得 (4) 其中' ρ为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验过程中,待测液体放置在容器中,故无法满足无限深广的条件,实验证明上式应进行如下修正方能符合实际情况: (5) 其中D 为容器径,H 为液柱高度。 当小球的密度较大,直径不是太小,而液体的粘度值又较小时,小球在液体中的平衡速度0v 会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: ...)Re 1080 19Re 1631(620+-+ =r v F πη (6) 其中,Re 称为雷诺数,是表征液体运动状态的 无量纲参数。 η ρ0 dv R e = (7) 当Re<0.1时,可认为(1)、(5)式成立;当0.1

水的粘度计算表-水的动力粘度计算公式

水的黏度表(0?40 C)

水的物理性质

F3 Viscosity decreases with p ressure (at temp eratures below 33 Water's p ressure-viscosity behavior [534] can be explained by the in creased p ressure (up to about 150 MPa) caus ing deformatio n, so reduci ng the stre ngth of the hydroge n-bon ded n etwork, which is also p artially res pon sible for the viscosity. This reduct ion in cohesivity more tha n compen sates for the reduced void volume. It is thus a direct con seque nee of the bala nee betwee n hydroge n bonding effects and the van der Waals dis persion forces [558] in water; hydroge n bonding p revaili ng at lower temp eratures and p ressures. At higher p ressures (and den sities), the bala nee betwee n hydroge n bonding effects and the van der Waals dis persi on forces is tipped in favor of the dis persion forces and the rema ining hydroge n bonds are stron ger due Viscous flow occurs by molecules movi ng through the voids that exist betwee n them. As the p ressure in creases, the volume decreases and the volume of these voids reduces, so no rmally in creas ing p ressure in creases the viscosity. |:| k -二 _ r 1 3ire S C 去 * . i i screr - 丁" \ . / . 一 '气:r J J: V .; r "舄 ■ 3 口二 K n PV ■ ■ L T 三 n 曲 ? ■ 5 M r 丐 町寸 -; J 百* " T N ; 【 I bl ■呻口 " 口寸津 a “ d c i 0 290 八 rao 800 i woo Pressure, MPa g 亠 C) Co? 4 — □ ] J %一 M J s 」气1 □ u 古 气 a 15 ?” ”〕 阳 "1 ■ \ ■ ID % ;: s' ¥ 口『 屮 n ◎ 9 r 奇 * =' f f- ::[ 丄 备 IT 记 |B - 3 D ■i 电- 'u O 丰759勺; 】I -一 11 L . P

相关主题