搜档网
当前位置:搜档网 › 碳罐的工作原理及漏油技术分析

碳罐的工作原理及漏油技术分析

碳罐的工作原理及漏油技术分析
碳罐的工作原理及漏油技术分析

碳罐的工作原理及漏油技术分析

汽油车燃油蒸气吸附脱附装置,俗称"碳罐":

是减少汽车燃油箱、化油器内汽油蒸发物排放的装置。

汽油是一种易挥发的液体,在常温下燃油箱经常充满蒸气,燃料蒸发排放控制系统的作用是将蒸气引入燃烧并防止挥发到大气中。这个过程起重要作用的是活性碳罐贮存装置,因为活性碳有吸附功能,当汽车运行或熄火时,燃油箱的汽油蒸气通过管路进入活性碳罐的上部,新鲜空气则从活性碳罐下部进入活性碳罐。发动机熄火后,汽油蒸气与新鲜空气在罐内混合并贮存在活性碳罐中,当发动机启动后,装在活性碳罐与进气歧管之间的燃油蒸发净化装置的电磁阀门打开,活性碳罐内的汽油蒸气被吸入进气歧管参加燃烧。

从1995年起,我国规定所有新出厂的汽车必须安装碳罐。一般装在汽油箱和发动机之前。每只100元左右。

加油时,由于汽油注入油箱,里边的空气会往外跑,夏天汽油挥发快,加注时容易挥发蒸汽,如果膨胀的蒸汽加上汽油顶出来的气来不及释放,就会呛油,所以在添加到快满的时候要慢一些,另外注意不要添加太满,这样不仅会呛油,对我们的炭罐还会有极大的伤害。

加油太满有害处,太满的话,汽油箱上端没有空间,汽油形成蒸汽就没地方走,这样,进到碳罐里的是汽油液体而不是汽油蒸汽,这样就构成了对碳罐的危害,所以说,每次加油不要太满,标定45升的油箱,每次在剩下十升左右汽油开始加油,一般加到第二次跳枪为止就合适了。

如果车辆油箱加油过多(油箱口能见油)造成油箱出气口埋在汽油里,使得出气管往碳罐流油,直到漏到路上,这种情况很少有人知道,应改变加油方式(不要加到跳枪为止),再换掉碳罐,得立即解决。

三、与碳罐相关的故障及注意事项

接下来我们来看一看,哪些故障与碳罐相关,以及车主们应该注意哪些细节问题,以降低由于蒸发控制系统引起的故障:

1、车辆行驶异响

非怠速运转的发动机工作时,时不时可以听到“哒哒”的响声。遇到着这种状况不要惊慌,要做的第一件事情是找到车上的碳罐电磁阀,判断“哒哒”的响声是不是它发出的,如果是那就

不必理会了。因为,碳罐电磁阀在油门打开时会产生断续的开关动作,从而发出声音,而这属于正常现象。

2、踩油门唑车,车内油味较大

如果遇到踩油门加速时唑车,且车内的汽油味比较大的故障,此时要格外注意碳罐系统中的管路是否破损。汽油蒸汽会沿着破损处直接排入大气中,造成车内汽油味大。而如果这时管路漏油,造成进入发动机进气道的是空气而不是燃油蒸汽,势必会造成发动机混合气过稀,从而导致不定时的唑车现象。

3、发动机怠速忽高忽低且加速无力

如果发动机启动后,怠速时转速有规律地忽高忽低且汽车加速无力,则要注意是否是由于碳罐的空气入口及过滤网阻塞引起的。因为,此时外界空气不易进入碳罐, 罐内缺少新鲜空气,怠速时,在进气真空吸力的作用下,吸附在活性碳罐内的汽油蒸气被吸入进气歧管,使氧传感器检测到混合气过浓,于是发动机控制单元减少喷油器量,此时可燃混合气的浓度随之减小,导致怠速变低;而随后,由于喷油量减小,氧传感器在下一循环又检测到混合气过稀,于是电脑又增加喷油量,导致怠速接着升高,因此便出现了怠速时转速有规律地忽高忽低现象。所以,出现此种情况时,车主要及时检查碳罐的进气入口是否畅通。

4、发动机熄火或不易启动

此时,则要注意检查可能导致问题出现的碳罐电磁阀。如果电磁阀一直处于关闭状态,那么碳罐内的汽油蒸汽会越聚越多,最终充满整个碳罐,其余的汽油蒸汽只能逸入大气中了,污染环境浪费燃油。反之,如果电磁阀一直处于开的转态,发动机的进气道的混合气就一直在处在加浓状态,而同时发动机的控制单元由于此时还没有控制碳罐电磁阀工作,也就不会发出降低喷油量的指令,这样便会造成热车时混合气过浓引起发动机熄火,以及热车熄火以后不易启动的现象。

5、加油不宜过满或过快

车主们要注意的第二点是每次加油不要过满,在添加到快满的时候记得要慢一些。加注过满容易造成活性碳罐系统中的管路进入汽油,这些液态燃料进入碳罐不仅是对碳罐本身构成危害,而且会顺着管路流入进气道引起火花塞“淹死”,造成汽车加油就熄火直至无法启动的严重后果。而加油过快的话,如果膨胀的蒸汽加之汽油顶出来的气体来不及释放,就会产生呛油。

总结:

通过这次与碳罐的接触,希望能够帮助广大的车主了解碳罐以及燃油蒸发控制系统的工作原理,能够在日常使用中有的放矢地防止使用不当的情况发生,并且在相关故障发生的时候,能够自我诊断,从容应对。

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞

滚齿加工工作原理

图8-69a为滚齿加工的工作原理。滚齿时切削齿坯的刀具为滚刀,由于滚刀的螺旋升角较大,所以外形象一个蜗杆,滚刀在垂直于螺旋槽方向开槽,形成若干切削刃,其法向剖面具有齿条形状。因此当滚刀连续旋转时,刀齿可视为一个无限长的齿条的移动,如图8-69b。同时刀齿由上而下的进行切削,保持齿条(滚刀)和齿坯之间的啮合关系,滚刀就可在齿坯上加工出渐开线齿形,图8-69c。 滚齿加工的精度一般为8~7级,表面粗糙度Ra为3.2~1.6μm。 滚齿加工是在滚齿机上进行的,图8-70为滚齿机外形图。滚刀安装在刀架上的滚刀杆上,刀架可沿着立柱垂直导轨上下移动。工件则安装在心轴上。 滚齿时滚齿机必须有以下几个运动: 1.切削运动(主运动)即滚刀的旋转运动,其切削速度由变速齿轮的传动比决定。 2.分齿运动即工件的旋转运动,其运动的速度必须和滚刀的旋转速度保持齿轮与齿条的啮合关系。其运动关系由分齿挂轮的传动比来实现。对于单线滚刀,当滚刀每转一转时,齿坯需转过一个齿的分度角度,即1/z转(z为被加工齿轮的齿数)。 3.垂直进给运动即滚刀沿工件轴线自上而下的垂直移动,这是保证切出整个齿宽所必须的运动,由进给挂轮的传动比再通过与滚刀架相连接的丝杆螺母来实现。

在滚齿时,必须保持滚刀刀齿的运动方向与被切齿轮的齿向一致,然而由于滚刀刀齿排列在一条螺旋线上,刀齿的方向与滚刀轴线并不垂直。所以,必须把刀架扳转一个角度使之与齿轮的齿向协调。滚切直齿轮时,扳转的角度就是滚刀的螺旋升角。滚切斜齿轮时,还要根据斜齿轮的螺旋方向,以及螺旋角的大小来决定扳转角度的大小及扳转方向。 齿轮滚刀是一种专用刀具,每把滚刀可以加工模数相同而齿数不等的各种大小不同的直齿或斜齿渐开线外圆柱齿轮。 在滚齿机上除加工直齿、斜齿外圆柱齿轮外,也可以加工蜗轮、链轮。但不能加工内齿轮。对于加工双联齿轮和三联齿轮它也受到许多限制。

发酵罐的结构系统及使用

发酵罐的结构系统及使用.txt28 生活是一位睿智的长者,生活是一位博学的老师,它常常春风化雨,润物无声地为我们指点迷津,给我们人生的启迪。不要吝惜自己的爱,敞开自己的胸怀,多多给予,你会发现,你也已经沐浴在了爱河里。实验十五发酵罐的结构系统及使用方法一、实验目的: 1 .了解发酵罐(气升式、搅拌式)的几大系统组成,即空气系统、蒸汽系统、补料系统、进出料系统、温度系统、在线控制系统。2.掌握发酵罐空消的具体方法及步骤3.掌握发酵罐进料及实消的具体方法及步骤4.掌握发酵罐各系统的控制操作方法 二、实验原理: 1.蒸汽系统:三路进汽——空气管路、补料管路、罐体) 2.温度系统: (1)夹套升温:蒸汽通入夹套。 (2)夹套降温:冷水通入夹套,下进水,上出水。 (3)发酵过程自动控温系统:热电偶控温,马达循环,只能加热,发酵设定温度低于室温时,由夹套进冷水降温。 3.空气系统: 取气口T空压机:往复式油泵获得高脉冲的压缩空气 粗过滤器:由沙布包裹棉花压实成块状叠加制得,作用是去除部分细菌及大部分灰尘 (贮气罐):空压机压缩使气体温度升高,经贮气使气体保温杀菌;压缩空气中有油污、水滴,且压力不稳,有一定的脉冲作用,会冲翻后面的过滤介质,贮气后可使油滴重力沉降,减小脉冲。 冷却塔):有降温并稳定作用,同时经旋风分离器进行气液分离 (丝网分离器):通过附着作用,逐步累积沉降而分离5 微米以上的微粒其作用介质为铜丝网 (加温器):对压缩空气升温,除湿,使湿度达50%-60% 总过滤器:纱布包裹棉花加活性炭颗粒,逐层压紧而成。 分过滤器:平板式纤维,中间为玻璃纤维或丝棉,下面放水阀应适时打开放出油、水,再用压缩空气控干。

硫化工艺基本常识

硫化工艺常识 1.什么是硫化工艺三卡?三卡的作用是什么? 三卡:硫化工艺卡、胎侧标识卡和胎面标识卡。每个硫化机台必须配齐三卡,并且三卡的规格、花纹和线条必须一一对应。 三卡用于确保工艺参数设定正确、硫化模具安装正确、胎胚使用正确。 2.为什么硫化模具变更时要执行首检制度? 防止工艺参数设定错误、防止三卡用错、防止模具用错和防止进错胎胚。 3.胶囊软洞对轮胎质量会产生什么影响? 胶囊软洞是胶囊漏的前期征兆。硫化时在轮胎内表面会有起鼓胞(实包),影响轮胎的使用质量。 4.胶囊常出现的问题有哪些? 新胶囊:中心线裂口、膨胀不均和砂眼; 胶囊使用过程:胶囊穿、胶囊漏、软洞和老化。 5.为什么硫化机预热时必须达到规定的预热温度、预热时间 和合模力?

因为预热的温度达不到规定要求会在硫化时导致欠硫;预热时间不足则硫化设备受热不均导致硫化时升温慢和合模力不足;合模力达不到工艺要求会导致成品胎出现胶边和出台等缺陷。 6.为什么胶囊使用到规定次数时必须强制更换? 胶囊随着使用次数增多而老化程度加剧,当使用到一定次数后,胶囊的老化程度严重影响成品胎质量,如胎里表面粗糙。 7.为什么要严格控制硫化吊胎时间? 胎胚在机械手上吊的时间过长会导致胎胚变形和子口脱空,严重影响轮胎质量。 8.为什么进灶前应对胎胚进行检查? 避免烘错胎胚,避免杂质、气泡等其他胎胚缺陷造成废次品。 9.喷隔离剂时为什么要清理钢棱圈? 钢棱圈上堆积过多隔离剂会产生子口裂口和子口圆角等缺陷。 10.为什么开灶前必须检查上模,确保前一灶轮胎卸出? 避免出现双胞胎及损坏模具。 11.为什么硫化号必须放在指定位置? 为了规范性、易查看和避免损伤其它标识。 12.为什么合模过程中操作人员不能离开硫化机台?

硫化原理

1140液压硫化机液压原理的设计 随着我国交通运输事业的迅速发展,高速公路不断铺设,这就对对汽车轮胎的均匀性提出了越来越高的要求,因此对硫化机的工作精度要求也随之提高。 目前我国轮胎行业广泛应用的是50年代发展起来的机械式硫化机,由于本身结构的原因,机械式硫化机存在如下问题: 1. 上下热板的平行度、同轴度、机械手卡爪圆度和对下热板内孔的同轴度等精度等级低,特别是重复精度低; 2. 连杆、曲柄齿轮等主要受力件上的运动副,是由铜套组成的滑动轴承,易磨损,对精度影响较大。 3. 上下模受到的合模力不均匀,对双模轮胎定型硫化机而言,两侧的受力,大于两内侧的受力; 4. 合模力是在曲柄销到达下死点瞬间由各受力构件弹性变形量所决定的,而温度变化使受力构件尺寸发生变化,合模力也随之发生变化,因此,生产过程中温度的波动将造成合模力的波动。 由于机械式轮胎硫化机存在的不可克服的弱点,已不能满足由于高速公路的发展,对汽车轮胎质量要求的日益提高。因而世界上主要轮胎公司已逐步采用液压式硫化机代替传统的机械式硫化机,这是因为液压式硫化机结构上具有如下特点: 1. 机体为固定的框架式,结构紧凑,刚性良好。虽然液压式硫化机也是双模腔,但从受力角度看,只是两台单模硫化机连结在一起,在合模力作用下,机架微小变形是以模具中心线对称的; 2. 开合模时,上模部分仅作垂直上下运动,可保持很高的对中精度和重复精度;另一方面,对保持活洛模的精度也较为有利; 3. 上下合模力均匀,不受工作温度影响; 4. 整机重量减轻,仅为机械式硫化机的1/3; 5. 由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和连杆等运动部件和易损件,使维护保养工作量减少。 一、液压式轮胎定型硫化机的工作程序 液压硫化机工作时,升降油缸带动上模沿导向柱上升,在机架内形成空腔,装胎装置转进装胎,中心机构的上下环上升,胎胚定位,装胎装置卸胎后退出,升降油缸带动上模沿导向柱下降合模,胎胚定型后合模到位,在模座下面的4个短行程加力油缸作用下,产生要求的合模力。轮胎硫化结束后,加力油缸卸压,升降油缸带动上模上升,轮胎脱出上模,上模上升到位后,中心机构囊筒上升,轮胎脱下模,中心机构的上下环下降,胶囊收入囊筒中,同时,卸胎机构转进,囊筒下降,卸胎机构将轮胎翻转而出,送至后充气冷却。 从各国实践经验看,液压式硫化机在升降驱动装置、活络模装置、加力装置、中心机构、囊筒升降装置上采用液压驱动。可以说除卸胎装置和装胎装置采用气动控制外,其它均采用液压驱动。因此,作为动力源的液压系统设计十分重要。 二、硫化机液压动力源的设计 1140液压式轮胎硫化机硫化胎圈直径范围12”~18”,最大合模力为1360KN。合模力的获得完全来源于油压。一般采用低压力、较快速度、较长行程的油缸控制开合模。合模后,用高压、短行程的油缸使上下模受到合模力。由于负载和速度变化较大,要求相应的液压系统能提供较大范围变化的压力和流量。 液压系统各缸工作时所需流量计算如下:

榨汁机原型分析报告(优)

产品分析报告 随着人们生活水平的提高,人们对健康、对生活品质有更高的需求。水果蔬菜榨汁机,它能使蔬菜及水果中的维生素,矿物质及其它营养成份不被破坏,并可按您的要求榨出各种新鲜的饮料。榨出的饮料具有健康和美容的功能,能有效地预防高血压、糖尿病等,使肌肤光滑而有生气。可以调制各种各样的中、西饮品、汤类或酱汁,以至婴儿食品,可以制作新鲜豆浆。海外早已流行吃生蔬菜水果长寿保健,因为这类生菜、水果中的营养丝毫没有被破坏,常吃这些食品,是很多百岁以上长寿者的秘诀,美国人能生吃的决不熟吃,象冬瓜、青菜都可生吃。因此,榨汁机在生活中是有很大的生存空间的。 产品现状 目前市面上能见到的榨汁机主要有以下几种类型 粉碎式 这种榨汁机在榨汁前要先将水果切成小块,去 核,开启榨汁机后将果块放入进料口,用推进棒 送料,高速旋转的刀具很快将果块粉碎,通过离 心力甩出渣滓,果汁从过滤网流出。一般产品的 外形比较大,部件较多,功率为200到400瓦之 间。 搅拌式搅拌后用过滤网过滤果汁 这种搅拌机身采用、可分离式刀叶和果汁过滤 网。搅拌机可令您随心所欲的制作各种果汁。动 力强劲的750瓦马达不费吹灰之力便可轻松搅 拌、粉碎或切割各种物料。借助其多级速度旋钮 及专用快捷按钮,便可按自己的方式进行碎冰或 调制果汁。利用果汁过滤网,您可以轻松制作出 无果核或果仁的清澈果汁。使用完毕后,可将分 离式刀叶和果汁过滤网放入洗碗机内进行清洗.

压榨式利用杠杆原理 水果蔬菜榨汁机,该手动榨汁机利用杠杆原理可快 速榨取果汁,省时省力,在家里便可轻松享受自制 新鲜果汁的乐趣。本产品外型新颖,方便清洗且节 约能源,是现代家庭厨房必备。它能使蔬菜及水果 中的维生素,矿物质及其它营养成份不被破坏,并 可按您的要求榨出各种新鲜的饮料。榨出的饮料具 有健康和美容的功能,能有效地预防高血压、糖尿 病等。 螺旋挤压式 电机带动螺旋刀具高速旋转将水果 粉碎,从而获得果汁, 这种榨汁机不用电能,操作方便, 环保。 多功能组合式 这种搅拌榨汁机集多项功能于一身,除可在家 中调制各种各样的中、西饮品、汤类或酱汁, 以至婴儿食品,还附有豆浆网,可以制作新 鲜豆浆,而个别型号也有干磨器及碎肉器选 择,让你可制作更多美食及甜品。

盾构滚刀简介

17”盘型滚刀结构和技术参数介绍 图 1 目前国内生产盾构刀具的厂家相当多。 在关键部件轴承的选择,国内多选择USA的“铁木肯”系列轴承。海瑞克选poland 的SKF系列轴承。所选都是世界知名品牌。我认为所有设计都围绕该部件为基准来设计的,所 有我定为关键部件。(图3) 刀圈多为H13 钢(USA牌号,国内和热做模具钢接近的合金钢材料),热处理后HRC55-60. 与刀榖做过盈配合(过盈量在0.15-0.25mm ),预热套装到刀榖配合位置。在加挡圈以防止 刀圈外脱。 轴多采用轴承钢之内的材料;刀榖,上下端盖采用合金结构钢材料锻打,调质后加工而 成。下端盖与轴配合目前国内的产品多为间隙配合在加工楔口防止转动,以O型圈做密封的方法设计的,而海瑞克是下端盖与轴为小过盈的紧配合。上端盖采用与轴的螺纹配合,通过4 个环形阵列的扳手孔旋紧到轴上。(扳手要自己做) 浮动密封的浮动环目前也有大约 2 种加工情况,一种车床加工再做表面处理的,在研磨;一种为时效处理后磨床加工的,在研磨的。相比后者较好。浮动密封的胶圈要恢复性好,弹 性好,耐油。(图4) 防尘密封主要国内厂家的一些滚刀有这个设计,海瑞克没见到过,所以上图片中没有显 示。就是在刀榖与上下端盖的间隙处,在刀榖内加工环槽,在里面安装密封条与端盖发生小 摩擦以防止岩层粉末进入刀体内。 除单刃滚刀外还有双刃, 3 刃等多种滚刀,即在刀榖上安装多个刀圈,分单个刀榖上安装 2 个刀圈;多个刀榖上安装多个刀圈(多为中心滚刀图5) 以海瑞克17”滚刀出厂标准,刀圈外径为17 英寸,扭矩约24-35n.m ,刀圈HRC55-60(未

做准确测量,凭经验和粗测设备估计和参照国内出厂数据)图 3 图

榨汁机工作原理分析

北京航空航天大学研究生课程考核记录 2010-2011 学年第一学期 学号姓名李梁成绩 课程名称:《高等机械原理》 论文题目:榨汁机工作原理分析 任课教师评语: 任课教师签字:考核日期:年月日

《产品设计与虚拟样机》 课题:榨汁机工作原理分析 姓名:李梁 学号: 班级: 指导教师:郭卫东教授 2011年2月28日

目录 1 榨汁机的工作过程 (4) 2 分析说明 (4) 3 榨汁机总体结构设计 (5) 4 典型机构设计 (6) 5 总结 (7) 参考文献 (7)

榨汁机工作原理分析 中航工业沈阳飞机工业(集团)有限公司李梁 摘要:机械传动已经伴随人们走过了几千年的历史,无论是在生活还是生产方面,它都为人类的发展进程作出了巨大的贡献。为了深入的了解机械传动的发展给人们生活带来的影响,本文阐述了榨汁机的工作原理。 关键字:机械传动榨汁机送果压榨出汁 1.榨汁机的工作过程 送果阶段——压榨阶段——出汁、排渣阶段——复位 2.分析说明 果子被送果机构抛入下榨碗后,上碗开始迅速下降,当上下碗接触后,下降速度变慢,使果子进入以下变化:果子受压变形,果皮含油层破裂出油,同时上碗帽内喷淋环喷出的水将油及时冲走,防止皮油进入果汁。当果子受压达到一定程度后,下刀在底部打出一圆孔,上碗继续下压,将果子内部成份从刚才底部切开的圆孔,通过下刀口压进漏汁管,在压榨接近终结过程中,上刀立即在果子顶部打孔,果皮进入上碗间隙处,这一过程中去芯孔管迅速上移,对漏汁管内的成分进行挤压。压榨结束时,果皮被上切刀切断进入上碗帽,果汁通过漏汁管细孔被压入果汁收集槽,籽核从去芯孔管下方开口出排出,乳装皮油混合物从下碗座流出。榨汁完成后,上碗机构迅速上移,去芯孔管清孔漏汁管,做好下一个压榨准备。

二位五通电磁原理图解

二位五通电磁阀原理图解 电-气转化组件将电讯号转化为气动讯号,电气讯号输入控制了气动输出。最常用的电-气转换组件是电磁阀(Solenoid actuated valves) 。电磁阀既是电器控制部分和气动执行部分的接口,也是和气源系统的接口。电磁阀接受命令去释放,停止或改变压缩空气的流向,在电-气动控制中,电磁阀可以实现的功能有:气动执行组件动作的方向控制,ON/OFF开关量控制,OR/NOT/AND 逻辑控制。在电磁阀家族中,最重要的是电磁控制换向阀(Solenoid actuated directional control valves) 。 电磁控制换向阀的工作原理 在气动回路中,电磁控制换向阀的作用是控制气流通道的通、断或改变压缩空气的流动方向。主要工作原理是利用电磁线圈产生的电磁力的作用,推动阀芯切换,实现气流的换向。按电磁控制部分对换向阀推动方式的不同,可以分为直动式电磁阀和先导式电磁阀。直动式电磁阀直接利用电磁力推动阀芯换向,而先导式换向阀则利用电磁先导阀输出的先导气压推动阀芯换向。 图4.2a表示3/2(三路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。线圈通电时,静铁芯产生电磁力,阀芯受到电磁力作用向上移动,密封垫抬起,使1、2接通,2、3断开,阀处于进气状态,可以控制气缸动作。当断电时,阀芯靠弹簧力的作用恢复原状,即1、2断,2、3通,阀处于排气状态。 二位五通双电控电磁阀的工作原理 2009-10-20 21:47 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作出气孔(分别提供给目标设备的一正一反动作的气源)、1个正动作排气孔和1个反动作排气孔(安装消声器)。对于小型自动控制设备,气管一般选用8~12mm 的工业胶气管。电磁阀一般选用日本SMC(高档一点,不过是小日本的产品)、台湾亚德客(实惠,质量也不错)或其它国产品牌等等。在电气上来说,两位三通电磁阀一般为单电控(即单线圈),两位五通电磁阀一般为双电控(即双线圈)。线圈电压等级一般采用DC24V、AC220V等。两位三通电磁阀分为常闭型和常开型两种,常闭型指线圈没通电时气路是断的,常开型指线圈没通电时气路是通的。常闭型两位三通电磁阀动作原理:给线圈通电,气路接通,线圈一旦断电,气路就会断开,这相当于“点动”。常开型两位三通单电控电磁阀动作原理:给线圈通电,气路断开,线圈一旦断电,气路就会接通,这也是“点动”。两位五通双电控电磁阀动作原理:给正动作线圈通电,则正动作气路接通(正动作出气孔有气),即使给正动作线圈断电后正动作气路仍然是接通的,将会一直维持到给反动作线圈通电为止。给反动作线圈通电,则反动作气路接通(反动作出气孔有气),即使给反动作线圈断电后反动作气路仍然是接通的,将会一直维持到给正动作线圈通电为止。这相当于“自锁”。基于两位五通双电控电磁阀的这种特性,在设计机电控制回路或编制PLC程序的时候,可以让电磁阀线圈动作1~2秒就可以了,这样可以保护电磁阀线圈不容易损坏。

第六章发酵设备

第六章发酵设备 本章学习目标 ?了解常见嫌气发酵设备及其流程的类型与特点 ?掌握通风发酵设备的类型、结构及性能特性 ?了解空气过滤除菌原理、常见设备流程及其应用特点 ?掌握常见发酵设备的应用特点和选用原则 目录 发酵设备的类型和基本构成 发酵设备的基本要求 发酵设备的功能: 发酵设备的要求: 发酵设备的分类 ?发酵设备的功能和要求 功能:按照发酵过程的要求,保证和控制各种发酵条件,主要是适宜微生物生长和形成产物的条件,促进生物体的新陈代谢,使之在低消耗(原料消耗、能量消耗、人工消耗)获得较高的产量。 要求: ?良好的传递质量、能量、热量性能 ?结构应尽可能简单,操作方便,易于控制 ?便于灭菌和清洗,能维持不同程度的无菌度 ?能适应特定要求的各种发酵条件,以保证微生物正常的生长代谢 ?发酵设备的分类 按发酵用培养基状况:固体发酵设备和液体发酵设备 按微生物类型:嫌气(酒精、啤酒和丙酮、丁醇)和好气(谷氨酸、柠檬酸、酶制剂和抗生

素,发酵过程中需不断通入空气) 按发酵过程所使用的生物体:微生物反应器(主流)、酶反应器(固定化酶反应器和溶液酶反应器)和细胞反应器 嫌气发酵设备 一、间隙式发酵罐 间歇式发酵是指生长缓慢期、加速期、平衡期和衰落期四个阶段的微生物培养过程全部在一个罐内完成 特点:罐内环境和发酵过程易于控制。目前在工业生产中仍然占据主要地位 二、水洗装置 特点,水压不大洗涤不彻底 水平喷水管与水平面呈20°夹角,水流喷出时使喷水管以48~56r/min的速度自动旋转,洗涤一次约需5min 三、连续发酵设备 连续发酵:通过在发酵罐内连续加入培养液和取出发酵液,可使发酵罐中的微生物一直维持在生长加速期,同时降低代谢产物的积累,培养液浓度和代谢产品含量相对稳定,微生物在整个发酵过程中即可始终维持在稳定状态,细胞处于均质状态。 特点:产品产量和质量稳定、发酵周期短、设备利用率高、易对过程进行优化等优点,微生物在整个发酵过程中始终维持在稳定状态,细胞处于均质状态。技术要求较高、容易造成杂菌污染,易发生微生物变异、发酵液分布与流动不均匀等。 四、单罐连续发酵设备 连续搅拌发酵器 连续细胞回用发酵器 塔式发酵器 膜式发酵器 固定化细胞反应器 五、连续搅拌发酵器

硫化机的原理及组成

硫化机的原理及组成 轮胎硫化机是电机带动齿轮泵和高压齿泵转动,具有机械式硫化机的结构特点,结构紧凑,刚性良好。 硫化机组成: 硫化机一般由四部分组成,一、夹紧机构,二、控制系统,三、压力系统,四、加热系统夹紧机构一般由机架及螺栓组成,控制系统由电控箱及一二次导线组成,压力系统由水压板及试压泵组成,加热系统由加热板及隔热板组成。 从接头长度分类、加长硫化机一台标准硫化机的组成部件主机(机架10根,螺栓10根,上下加热板各一块,隔热板一块,水压板一块)。 工作原理: 橡胶带硫化是一个由生胶变为熟胶的过程,在这个过程中需要提供压力,温度,及控制硫化时间。 硫化机则满足这个过程,由机架及水压板提供压力,电控箱及加热板提供温度及控制硫化时间。一般国内普通橡胶带硫化温度为145度,硫化压力不超过1.5mpa,硫化时间根据胶带不同约在30~60分钟不等。 关于硫化生胶为类似粘土状可塑体,其中含有一定配比的硫磺,通过加热,加压,在一定温度及压力下通过一段时间的化学反应成为具有弹性的橡胶,硫磺在这一过程中,在橡胶分子与分子中起到了桥梁的作用,故称这一生胶变熟胶的过程为硫化。

硫化时间指保持硫化温度使胶带充分硫化的一段时间,又称保温时间。 配套附件: 试压泵1台,高压软管总成1件,电控箱一台,一次导线1根,二次导线2根硫化机专用工具:棘轮扳手2把,夹紧丝杠1套加长型硫化机与标准硫化机的不同,机架数量不同、上下加热板加压:0.8mpa后其缝隙,不大于0.5mm; 硫化机的使用安装: 硫化机构件轻巧,一般人工均能搬动安装前要考虑到电源及水源的方便,操作空间,在运输机上施工时,用枕木搭一个平台,其要求根据硫化胶带的位置,硫化机同时使用的台数而定,施工前请准备好处理胶带的工具,胶料等备件。 标签: 硫化机

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

滚刀工作原理分析

滚刀工作原理分析 盘形滚刀简称盘刀,就是隧道掘进机滚压破岩常用得一种刀具型式,典型得盘刀一般由刀圈、轮毂与轴组成。?盘形滚刀在各类隧道掘进机上使用非常广泛,主要用于全断面岩石隧道掘进机、盾构及顶管设备。过去盘形滚刀主要用于全断面岩石隧道掘进机刀盘破岩,随着隧道及地下工程得快速发展,所遇到地层复杂性逐渐增加,开始在盾构刀盘上使用盘刀(同时布置切刀与滚刀),形成所谓得复合式盾构,以应对各种软硬不均或富水地层,如砂卵(砾)石地层、风化岩地层及越江、跨海隧道得高水压地层_1]。实践证明,这种盾构对地层具有良好得适应性,大大拓展了盾构得适用范围。国际上现在有研发全能隧道掘进机得趋势, 1盘形滚刀得受力及破岩机复合式盾构应该就是全能隧道掘进机得一种雏型。? 理?每把盘形滚刀在切割岩石得过程中,刀刃与岩石之间都存在3个方向得相互作 用力:(1)法向推压力FN,指向开挖面,由刀盘得推力提供;(2)切向滚动切割力FR,指向滚刀切向,由刀盘转矩提供;(3)滚刀边缘得侧向力FIJ,由滚刀对岩石得挤压力与刀盘旋转得离心力所产生,指向刀盘中心,其数值较小,与其它2个力不属于同一数量级,一般不考虑。3个方向得作用力见图1。切向滚动切割力主要取决于推力、切深及滚刀直径。盘刀直径一定,切深越大,所需滚动切割力越大;切深确定时,滚动切割力随盘刀直径得增大而减小。?刀盘工作时,滚刀先与开挖面接触,在推力作用下紧压在岩面上,随着刀盘得旋转,盘形滚刀一方面绕刀盘中心轴公转,同时绕自身轴线自转。盘形滚刀在刀盘得推力与转矩共同作用下,在掌子面上切出一系列同心圆沟槽。刀盘旋转并压人岩石得过程中,盘形滚刀对岩石将产生挤压、剪切、拉裂等综合作用,首先在刀刃下会产生小块破碎体,破碎体在刀刃下被碾压成粉碎体,继而被压密形成密实核,随后密实核将滚刀压力传递给周围岩石,并产生径向裂纹,其中有一条或多条裂纹向刀刃两侧向延伸,到达自由面或与相邻裂纹交汇,形成岩石碎片,整个过程如图2所示。由此形成得岩渣由破碎体、粉碎体及岩石碎片组成,各部分得组成比例取决于岩石性质、刀圈几何尺寸、推压力及刀问距。 图1滚刀受力示意图 ?图2 滚刀破岩原理示意图 2、1 布刀方式分析?盘形滚刀 2盘形滚刀在刀盘上得布置? 在刀盘上得布置应满足一定得力学与几何学规律,布置时一般应满足:(1)尽可能使滚刀及刀盘受力均匀,使作用在大轴承上得径向载荷为零;(2)使前面得刀具能够为后面得刀具提供破岩临空面,形成前后滚刀顺次破岩,如图3所示。 图3 滚刀顺次破岩原理 因此,盘形滚刀在刀盘上一般按单螺旋线或双螺旋线模式,相邻滚刀按一定相位差布置.如R0bbins型与Java型掘进机得中心刀都布置在同一直线上;Robbins型掘进机正刀与边刀都以相邻2把刀为一组呈对称布置(相位角相差180°,相邻2组刀具沿刀盘轴线旋转90°);而Java型掘进机正刀与边刀亦以对称布置为原则,但相邻刀具相隔160~~165°.?盘形滚刀通常有单刃、双刃及三刃3种形式。盘形滚刀在刀盘上得布置应便于形成顺次破岩,即前一把滚刀先形成较好得切割轨迹及延伸裂纹,后一把滚刀到达时产生得裂纹将终止于前把滚刀形成得裂纹(即裂纹贯通、形成岩片)。由于双刃与三刃滚刀不能较好地满足所有滚刀顺次破岩得要求,且容易产生不均匀磨损,造成刀具受力恶化及刀具浪费,应尽可能选用单刃滚刀,边刀也应采用单刃滚刀.但为了节约刀盘空间,无论盾构还就是掘进机,在刀盘中心大都布置双刃或三刃滚刀。 2、2 刀间距得确定原则及方法?无论就是采用哪种方式布置刀具,刀间

滚刀分析计算流程

3.1.1 岩石试件模拟 3.1.2 盘形滚刀模拟 分析流程: 第一阶段 1.在硬岩a中以带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 2.在较硬岩b中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 3.在较软岩c中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分

三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 4.在软岩d中带入8种滚刀尺寸,掘进速度3m/h,最终贯入量10mm,分三个阶段进行记录:第一个阶段是冲击挤压破碎阶段,(受力激增阶段)(贯入深度5mm) 第二个阶段是大量微裂纹形成阶段,(受力增长阶段)(贯入深度7.5mm) 第三个阶段是主裂纹形成阶段。(受力稳定)(贯入深度10mm)记录的主要内容有a.破岩的面积,裂缝延伸情况, b.滚刀的接触应力 通过观察破岩面积和受力分析在每种岩石条件下的最佳滚刀尺寸第二阶段 1.在硬岩a中选取第一阶段中获得的硬岩下的最佳滚刀模型,选取滚刀的间距50、60、70mm进行计算(两个滚刀是有先后顺序的,不是同时压入),通过观察两个滚刀的裂纹的情况,分析最佳滚刀间距。 2.在软岩d中选取第一阶段中获得的硬岩下的最佳滚刀模型,选取滚刀的间距70、80、90mm进行计算,通过观察两个滚刀的裂纹的情况,分析最佳滚刀间距。 第三阶段 1.通过第一阶段的计算分析硬岩a的条件下,最佳滚刀尺寸时的应力情况,来计算随着滚刀贯入度的增加,应力的增长情况。然后采用两个滚刀同时压入岩石,在几个贯入度时,观察裂纹的闭合连接情况,取裂缝连通时的贯入度为最优贯入度。 2.通过第一阶段的计算分析软岩d的条件下,最佳滚刀尺寸时的应力情况,来计算随着滚刀贯入度的增加,应力的增长情况。然后采用两个滚刀同时压入岩石,在几个贯入度时,观察裂纹的闭合连接情况,取裂缝连通时的贯入度为最优贯入度。 第四阶段 滚刀齿数2、4、8时,滚刀间距80mm(8齿滚刀:8个单滚刀同时压入岩石,无先后顺序),随便取一种岩石情况,贯入度取10mm,掘进速度取3m/h 分析滚刀接触力,裂缝情况。

电磁阀控制气缸原理图

神威气动https://www.sodocs.net/doc/137838187.html, 文档标题:电磁阀控制气缸原理图 一、电磁阀控制气缸原理图的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

CSTR厌氧发酵罐工作原理

CSTR厌氧发酵罐工作原理 一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。 但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。 我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度 废水尤其在处理生活污水方面的合适条件。 二、厌氧反应四个阶段 一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解: (1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。 (2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。 (3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。 (4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。

实验室碳硫分析的工作原理和各种方法

实验室碳硫分析的工作原理和各种方法 碳和硫是确定钢铁产品规格和质量的二个重要元素。一般碳含量高于2.0%以上的叫做铁,低于2.0%的叫钢。通常把碳含量高于0.60%的钢叫高碳钢,碳含量在0.25%~0.60%之间的钢叫中碳钢,碳含量小于0.25%的钢叫低碳钢,碳含量小于0.03%的叫工业纯铁。 碳对钢铁的性能起着重要的作用:随着碳含量的增加,钢的硬度和强度提高,其韧性和塑性下降;反之,碳含量减少,则硬度和强度下降,而韧性和塑性增加。碳硫分析仪是企业理化分析室中的一种常用计量器具,用于对金属和非金属材料中的碳和硫元素含量进行定量分析,速度快,性能稳定,操作简便。广泛应用于冶金,铸造,机械,铁路等工矿企业,产品质检所,大专院校,科研院所,可以方便快捷的进行原料验收、炉前分析、成品检验等阶段的分析测试。 硫在钢铁中是一种有害物质,会恶化钢铁的质量,降低其力学性能及耐蚀性、可焊性。特别是钢中的硫,若以硫化铁的状态存在时,由于它的熔点低(1000℃左右),会引起钢的“热脆”现象,即热变形,高温时工作产生裂纹,影响产品的质量和使用寿命。所以,钢中的硫含量越低越好。一般要求,普通钢中的硫含量小于0.050%,工具钢中的硫含量小于0.045%,而优质钢中的硫含量要小于0.020%。 鉴于碳硫含量对钢铁质量和性能的重要作用,因此检测钢铁中的碳硫含量,即碳硫分析具有重要意义。 钢铁中的碳硫元素在高温下(1200℃~1400℃)通氧燃烧。均能转化为气体,生成CO2和SO2,这就是燃烧法分析碳硫的基础。 碳硫分析的原理,就是将试样在高温炉中(如电阻炉也称管式炉、电弧炉、高频感应燃烧炉等)通氧燃烧,生成并逸出CO2和SO2气体,用此法实现碳硫元素与金属元素及其化合物的分离,然后测定CO2和SO2的含量,再换算出试样中的碳硫含量。一般的测定方法有以下几种: 1.红外检测法:试样中的碳、硫经过富氧条件下的高温加热燃烧,氧化为CO2、SO2气体。气体经处理后进入各自的吸收池,对相应的红外辐射进行吸收,由探测器转发为信号,经计算机处理输出结果。此方法具有准确、快速、灵敏度高的特点,高低碳硫含量均使用,采用此方法的红外碳硫分析仪,能快速、准确地测定钢、铁、合金、有色金属、稀土金属、水泥、矿石、焦碳、煤、炉渣、陶瓷、铸造型芯砂以及其它材料中碳硫两元素的质量分数。该系列仪器是国内、外先进技术融合的结晶,集光、电、计算机、分析技术为一体的新技术产品,测量范围宽,抗干扰能力强,性能可靠,自动化程度较高,价格也比较高,适用于分析精度要求较高的场合。是化学分析工作者理想的检测设备。 2.气体容量法:常用的有测碳为气体容量法和非水滴定法,测硫为碘量法或酸碱滴定法。特别是气体容量法测碳、碘量法定硫,既快速又准确,是我国碳、硫联合测定最常用的方法,采用此方法的高速碳硫分析仪的精度:符合GB22 3.69-97GB223.68-97标准,测量时间:约45秒(不含取样、称样时间),碳含量下限为0.050%,硫含量下限为0.005%测量,可满足大

滚齿加工工作原理

滚齿加工原理 图8-69a为滚齿加工的工作原理。滚齿时切削齿坯的刀具为滚刀,由于滚刀的螺旋升角较大,所以外形象一个蜗杆,滚刀在垂直于螺旋槽方向开槽,形成若干切削刃,其法向剖面具有齿条形状。因此当滚刀连续旋转时,刀齿可视为一个无限长的齿条的移动,如图8-69b。同时刀齿由上而下的进行切削,保持齿条(滚刀)和齿坯之间的啮合关系,滚刀就可在齿坯上加工出渐开线齿形,图8-69c。 滚齿加工的精度一般为8~7级,表面粗糙度Ra为3.2~1.6μm。 滚齿加工是在滚齿机上进行的,图8-70为滚齿机外形图。滚刀安装在刀架上的滚刀杆上,刀架可沿着立柱垂直导轨上下移动。工件则安装在心轴上。 滚齿时滚齿机必须有以下几个运动: 1.切削运动(主运动)即滚刀的旋转运动,其切削速度由变速齿轮的传动比决定。

2.分齿运动 即工件的旋转运动,其运动的速度必须和滚刀的旋转速度保持齿轮与齿条的啮合关系。其运动关系由分齿挂轮的传动比来实现。对于单线滚刀,当滚刀每转一转时,齿坯需转过一个齿的分度角度,即1/z 转(z 为被加工3.垂直进给运动 即滚刀沿工件轴线自上而下的垂直移动,这是保证切出整个齿宽所必须的运动,由进给挂轮的传动比再通过与滚刀架相连接的丝杆螺母来实现。 齿轮的齿数)。 在滚齿时,必须保持滚刀刀齿的运动方向与被切齿轮的齿向一致,然而由于滚刀刀齿排列在一条螺旋线上,刀齿的方向与滚刀轴线并不垂直。所以,必须把刀架扳转一个角度使之与齿轮的齿向协调。滚切直齿轮时,扳转的角度就是滚刀的螺旋升角。滚切斜齿轮时,还要根据斜齿轮的螺旋方向,以及螺旋角的大小来决定扳转角度的大小及扳转方向。 齿轮滚刀是一种专用刀具,每把滚刀可以加工在滚齿机上除加工直齿、斜齿外圆柱齿轮外,也可以模数相同而齿数不等的各种大小不同的直齿或斜齿渐开线外圆柱齿轮。 加工蜗轮、链轮。但不能加工 内齿轮。对于加工双联齿轮和三联齿轮它也受到许多限制。 滚齿加工的原理及滚齿加工润滑油的选择 1.滚齿加工原理 滚齿加工是按照展成法的原理来加工齿轮的。用滚刀来加工齿轮相当于一对交错轴的螺旋齿轮啮合。在这对啮合的齿轮副中,一个齿数很少、只有一个或几个,螺旋角很大,就演变成了一个蜗杆状齿轮,为了形成切削刃,在该齿轮垂直于螺旋线的方向上开出容屑槽,磨前、后刀面,形成切削刃和前、后角,于是就变成了滚刀。滚刀与齿坯按啮合传动关系作相对运动,在齿坯上切出齿槽,形成了渐开线齿面,如图1a 所示。在滚切过程中,分布在螺旋线上的滚

硫化工艺

硫化工艺 【设计方案】平板硫化机 【学习内容】一、硫化的原理: 硫化通常是橡胶制品生产的最后一个工艺过 程,也是橡胶制品加工中的一个化学过程。硫化是指 将具有一定塑性和粘性的胶料经过适当加工而制成 的半成品,在一定外部条件下通过化学因素或物理因 素的作用,重新转化为软质弹性橡胶制品或硬质韧性 橡胶制品,从而获得使用性能的工艺过程。在硫化过 程中,外部条件使胶料组份中生胶与硫化剂或生胶与 生胶之间发生反应,由线型的橡胶大分子交联成立网 状结构的大分子。通过这一反应,大大改善了橡胶的 各项性能,使橡胶制品获得了能满足产品需要的物理 机械性能和其他性能。硫化的实质是交联,即线型的 橡胶分子结构转化为空间网状结构过程。 橡胶受热变软,遇冷变硬、发脆,不易成型, 容易磨损,易溶于汽油等有机溶剂,分子内具有双键, 易起加成反应,容易老化。为改善橡胶制品的性能, 生产上要对生胶进行一系列加工过程,在一定条件 下,使胶料中生胶与硫化剂发生化学反应,使其线型 结构的大分子交联成为立体网状结构的大分子,从而

使胶料具备高强度、高弹性、抗腐蚀等优良性能。 二、硫化的方法 1、温室硫化法 温室硫化法用于需求在室温及不加压的条件下进行硫化的场合。室温硫化通常将硫化剂与溶剂、惰性配合剂等配成一个组份,橡胶、树脂等与其他配合剂配成另一组分,使用是进行混合。 2、冷硫化法 把制成品浸入2%-5%的一氯化硫的溶液中,时间从几秒到几分钟不等。 3、热硫化法 ⑴、间歇式硫化 ①、热水槽硫化法此法为直接常压硫化法,把需要硫化的产品浸于热水或盐水,适于乳胶薄膜制品的硫化。 ②、烘房、烘箱热空气硫化法此法也为直接常压硫化法,该方法有两种方式,一是把半成品放在加热室中加热硫化;另一种是烘箱硫化,适用于某些特种橡胶制品的二次硫化。 ③、硫化罐硫化硫化罐硫化工艺借助飞的硫化设备为硫化罐。 根据硫化介质的不同,硫化罐硫化工艺又有如下

相关主题