搜档网
当前位置:搜档网 › 222反证法试题

222反证法试题

222反证法试题
222反证法试题

选修2-2 2.2.2 反证法

一、选择题

1.否定结论“至多有两个解”的说法中,正确的是()

A.有一个解

B.有两个解

C.至少有三个解

D.至少有两个解

[答案] C

[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.

2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()

A.a、b、c都是奇数

B.a、b、c或都是奇数或至少有两个偶数

C.a、b、c都是偶数

D.a、b、c中至少有两个偶数

[答案] B

[解析]a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.

3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是() A.假设三内角都不大于60°

B.假设三内角都大于60°

C.假设三内角至多有一个大于60°

D.假设三内角至多有两个大于60°

[答案] B

[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.

4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()

A.假设a,b,c都是偶数

B.假设a、b,c都不是偶数

C.假设a,b,c至多有一个偶数

D.假设a,b,c至多有两个偶数

[答案] B

[解析]“至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.

5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是()

A.a

B.a≤b

C.a=b

D.a≥b

[答案] B

[解析]“a>b”的否定应为“a=b或a

6.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()

A.一定是异面直线

B.一定是相交直线

C.不可能是平行直线

D.不可能是相交直线

[答案] C

[解析]假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.

7.设a,b,c∈(-∞,0),则三数a+1b,c+1a,b+1c中()

A.都不大于-2

B.都不小于-2

C.至少有一个不大于-2

D.至少有一个不小于-2

[答案] C

[解析]a+1b+c+1a+b+1c

=a+1a+b+1b+c+1c

∵a,b,c∈(-∞,0),

∴a+1a=--a+-1a≤-2

b+1b=--b+-1b≤-2

c+1c=--c+-1c≤-2

∴a+1b+c+1a+b+1c≤-6

∴三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.

8.若P是两条异面直线l、m外的任意一点,则()

A.过点P有且仅有一条直线与l、m都平行

B.过点P有且仅有一条直线与l、m都垂直

C.过点P有且仅有一条直线与l、m都相交

D.过点P有且仅有一条直线与l、m都异面

[答案] B

[解析]对于A,若存在直线n,使n∥l且n∥m

则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥α);对于D,过点P与l、m都异面的直线不唯一.

9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是()

A.甲

B.乙

C.丙

D.丁

[答案] C

[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.

10.已知x1>0,x1≠1且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结

论时,应为()

A.对任意的正整数n,都有xn=xn+1

B.存在正整数n,使xn=xn+1

C.存在正整数n,使xn≥xn+1且xn≤xn-1

D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0

[答案] D

[解析]命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.

二、填空题

11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形

[解析]“至少有一个”的否定是“没有一个”.

12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.

[答案]a,b都不能被5整除

[解析]“至少有一个”的否定是“都不能”.

13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:

①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;

②所以一个三角形中不能有两个直角;

③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.

正确顺序的序号排列为____________.

[答案]③①②

[解析]由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.

14.用反证法证明质数有无限多个的过程如下:

假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.

显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.

[答案]质数只有有限多个除p1、p2、…、pn之外

[解析]由反证法的步骤可得.

三、解答题

15.已知:a+b+c>0,ab+bc+ca>0,abc>0.

求证:a>0,b>0,c>0.

[证明]用反证法:

假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,

不妨设a<0,b<0,c>0,则由a+b+c>0,

可得c>-(a+b),

又a+b<0,∴c(a+b)<-(a+b)(a+b)

ab+c(a+b)<-(a+b)(a+b)+ab

即ab+bc+ca<-a2-ab-b2

∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,

这与已知ab+bc+ca>0矛盾,所以假设不成立.

因此a>0,b>0,c>0成立.

16.已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能同时大于14.

[证明]证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.(1-a)+b2≥(1-a)b>14=12,

同理(1-b)+c2>12,(1-c)+a2>12.

三式相加,得

(1-a)+b2+(1-b)+c2+(1-c)+a2>32,

即32>32,矛盾.

所以(1-a)b、(1-b)c、(1-c)a不能都大于14.

证法2:假设三个式子同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14,三式相乘得(1-a)b(1-b)c(1-c)a>143①

因为0

同理,0

所以(1-a)a(1-b)b(1-c)c≤143.②

因为①与②矛盾,所以假设不成立,故原命题成立.

17.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.

(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);

(2)判断(1)中命题的逆命题是否成立,并证明你的结论.

[解析](1)证明:∵a+b≥0,∴a≥-b.

由已知f(x)的单调性得f(a)≥f(-b).

又a+b≥0?b≥-a?f(b)≥f(-a).

两式相加即得:f(a)+f(b)≥f(-a)+f(-b).

(2)逆命题:

f(a)+f(b)≥f(-a)+f(-b)?a+b≥0.

下面用反证法证之.

假设a+b<0,那么:

a+b<0?a<-b?f(a)

?f(a)+f(b)

这与已知矛盾,故只有a+b≥0.逆命题得证.

18.(2010?湖北理,20改编)已知数列{bn}的通项公式为bn=1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.

[解析]假设数列{bn}存在三项br、bs、bt(rbs>br,则只可能有2bs=br+bt成立.

∴2?1423s-1=1423r-1+1423t-1.

两边同乘3t-121-r,化简得3t-r+2t-r=2?2s-r3t-s,

由于r

故数列{bn}中任意三项不可能成等差数列.

反证法与数学归纳法

(三)、反证法 反证法证明的主要步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。 【典型例题】 例1、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0 例2、设0 < a, b, c < 1,求证:(1 - a)b, (1 - b)c, (1 - c)a,不可能同时大于41 例3、.已知a 、b 、c 是互不相等的非零实数.求证:三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0至少有一个方程有两个相异实根. 【巩固练习】 1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数 2.设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立, 其中正确判断的个数为( )A .0 B .1 C .2 D .3 3.若x 、y 、z 均为实数,且a =x 2-2y + 2π,b =y 2-2z +3π,c =z 2-2x +6 π,求证a 、b 、c 中至少有一个大于零. 4.若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。试求实数a 的取值范围。

高三生物遗传学知识点总结

高三生物遗传学知识点总结 一仔细审题:明确题中已知的和隐含的条件,不同的条件现象适用不同 规律:1基因的分离规律:a只涉及一对相对性状;b杂合体自交后代的性状 分离比为3∶1;c测交后代性状分离比为1∶1。2基因的自由组合规律:a 有两对(及以上)相对性状(两对等位基因在两对同源染色体上)b两对相 对性状的杂合体自交后代的性状分离比为9∶3∶3∶1c两对相对性状的测交 后代性状分离比为1∶1∶1∶1。3伴性遗传:a已知基因在性染色体上b♀♂ 性状表现有别传递有别c记住一些常见的伴性遗传实例:红绿色盲血友病果 蝇眼色钟摆型眼球震颤(x-显)佝偻病(x-显)等二掌握基本方法:1最基础 的遗传图解必须掌握:一对等位基因的两个个体杂交的遗传图解(包括亲代 产生配子子代基因型表现型比例各项)例:番茄的红果r,黄果r,其可能的 杂交方式共有以下六种,写遗传图解:p①rrrr②rrrr③rrrr④rrrr⑤rrrr⑥rrrr★注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在 ▲一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来 自父方,一个来自母方。2关于配子种类及计算:a一对纯合(或多对全部基 因均纯合)的基因的个体只产生一种类型的配子b一对杂合基因的个体产生 两种配子(dddd)且产生二者的几率相等。cn对杂合基因产生2n种配子, 配合分枝法即可写出这2n种配子的基因。例:aabbcc产生22=4种配子:abcabcabcabc。3计算子代基因型种类数目:后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积(首先要知道:一对基因杂交, 后代有几种子代基因型?必须熟练掌握二1)例:aaccaacc其子代基因型数目?∵aaaaf是aa和aa共2种[参二1⑤]ccccf是cccccc共3种[参二1④]答案 =23=6种(请写图解验证)4计算表现型种类:子代表现型种类的数目等于

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

最新充要条件与反证法(整理好的很详细)

充要条件与反证法 ●知识梳理 1.充分条件:如果p ?q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件. 2.必要条件:如果q ?p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件. 3.充要条件:如果既有p ?q ,又有q ?p ,记作p ?q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的. 4.反证法:当直接证明有困难时,常用反证法. ●点击双基 1.ac 2>bc 2是a >b 成立的 A.充分而不必要条件 B.充要条件 C.必要而不充分条件 D.既不充分也不必要条件 解析:a >b ac 2>bc 2,如c =0. 答案:A 2.(2004年湖北,理4)已知a 、b 、c 为非零的平面向量.甲:a ·b =a ·c ,乙:b =c ,则 A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件 解析:命题甲:a ·b =a ·c ?a ·(b -c )=0?a =0或b =c . 命题乙:b =c ,因而乙?甲,但甲乙. 故甲是乙的必要条件但不是充分条件. 答案:B 3.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >2 1 ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:在△ABC 中,A >30°?0<sin A <1sin A >21,sin A >2 1?30°<A <150°? A >30°. ∴“A >30°”是“sin A > 2 1 ”的必要不充分条件. 答案:B 4.若条件p :a >4,q :5<a <6,则p 是q 的______________. 解析:a >45<a <6,如a =7虽然满足a >4,但显然a 不满足5<a <6. 答案:必要不充分条件 5.(2005年春季上海,16)若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:若a >0且b 2-4ac <0,则对任意x ∈R ,有ax 2+bx +c >0,反之,则不一定成立.

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

四种命题典型例题

四种命题·典型例题 能力素质 [ ] 分析条件及结论同时否定,位置不变. 答选D. 例2 设原命题为:“对顶角相等”,把它写成“若p则q”形式为________.它的逆命题为________,否命题为________,逆否命题为________.分析只要确定了“p”和“q”,则四种命题形式都好写了. 解若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角. 例3 “若P={x|x|<1},则0∈P”的等价命题是________. 分析等价命题可以是多个,我们这里是确定命题的逆否命题. ≠{x||x|<1}” 例4 分别写出命题“若x2+y2=0,则x、y全为0”的逆命题、否命题 和逆否命题. 分析根据命题的四种形式的结构确定. 解逆命题:若x、y全为0,则x2+y2=0; 否命题:若x2+y2≠0,则x,y不全为0; 逆否命题:若x、y不全为0,则x2+y2≠0. 说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y 不全为0”,这要特别小心. 例5 有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; [ ] A.①②B.②③ C.①③D.③④ 分析应用相应知识分别验证. 解写出相应命题并判定真假 ①“若x,y互为倒数,则xy=1”为真命题; ②“不相似三角形周长不相等”为假命题; ③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题; 选C.

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少 (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

反证法练习题

2.2.2反证法 双基达标(限时20分钟) 1.实数a,b,c不全为0等价于 ().A.a,b,c均不为0 B.a,b,c中至多有一个为0 C.a,b,c中至少有一个为0 D.a,b,c中至少有一个不为0 解析不全为0即至少有一个不为0,故选D. 答案 D 2.下列命题错误的是 ().A.三角形中至少有一个内角不小于60° B.四面体的三组对棱都是异面直线 C.闭区间[a,b]上的单调函数f(x)至多有一个零点 D.设a、b∈Z,若a、b中至少有一个为奇数,则a+b是奇数 解析a+b为奇数?a、b中有一个为奇数,另一个为偶数,故D错误.答案 D 3.设x,y,z都是正实数,a=x+1 y,b=y+ 1 z,c=z+ 1 x,则a,b,c三个数 (). A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2 D.都大于2 解析若a,b,c都小于2,则a+b+c<6①, 而a+b+c=x+1 x+y+ 1 y+z+ 1 z≥6②, 显然①,②矛盾,所以C正确. 答案 C 4.命题“△ABC中,若A>B,则a>b”的结论的否定应该是________.答案a≤b

5.命题“三角形中最多只有一个内角是直角”的结论的否定是________.答案至少有两个内角是直角 6.设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直. 证明假设AC⊥平面SOB,如图, ∵直线SO在平面SOB内, ∴SO⊥AC. ∵SO⊥底面圆O,∴SO⊥AB. ∴SO⊥平面SAB. ∴平面SAB∥底面圆O. 这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直. 综合提高(限时25分钟) 7.已知α∩β=l,a?α,b?β,若a,b为异面直线,则 ().A.a,b都与l相交 B.a,b中至少有一条与l相交 C.a,b中至多有一条与l相交 D.a,b都不与l相交 解析逐一从假设选项成立入手分析,易得B是正确选项,故选B. 答案 B 8.以下各数不能构成等差数列的是 ().A.3,4,5 B.2,3, 5 C.3,6,9 D.2,2, 2 解析假设2,3,5成等差数列,则23=2+5,即12=7+210,此等式不成立,故2,3,5不成等差数列. 答案 B 9.“任何三角形的外角都至少有两个钝角”的否定应是________.解析“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

数学奥林匹克高中训练题_30

数学奥林匹克高中训练题_30 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.设{}1,2A =,则从A 到A 的映射中,满足()()f f x f x ??=??的个数是( ). A .1个 B .2个 C .3个 D .4个 2.在顶点为()1997,0,()0,1997,()1997,0-,()0,1997-的正方形R (包括边界)中,整点的个数为( )个. A .7980011 B .7980013 C .7980015 D .7980017 3.设() {} ,1,0M x y xy x = =,(){},|arctg arcctg πN x y x y =+=.那么,( ). A .(){},|1M N x y xy ?= = B .M N M ?= C .M N N ?= D .(){,|1M N x y xy ?= =且x ,y 不 同时为负数} 4.在四面体ABCD 中,面ABC 及BCD 都是边长为2a 的等边三角形,且AD =, M 、N 分别为棱AB 、CD 的中点.则M 与N 在四面体上的最短距离为( ). A .2a B .32 a C .a D .5 2a 5.已知三个三角形、1、2的周长分别为p 、1p 、2p .若∽1∽2,且较小的两个三角形1和2可以互不重叠地放入大三角形的内部.则12p p +的最大值是( ). A .p B C D .2p 6.以正n 边形顶点为顶点的不相同的三角形的个数等于( ). A .210n ?? ???? B .211n ?????? C .212n ?????? D .非上述答案 二、填空题 7.设p 、q N ∈,且1p q n ≤<≤,其中,n 是不小于3的自然数.则形如p q 的全体分数之和S 为_________. 8.在ABC ?中,已知三内角A ∠、B 、C ∠成等差数列,其对边分别为a 、b 、c ,

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

初二数学 几何证明初步经典练习题 含答案

初二数学几何证明初步经典练习题含答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800 ( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800 ,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC= 13求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得: 18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴ CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于 D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. C B A D E F D A B C B A E D N M B D A C

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

不等式证明方法专项+典型例题

不等式证明方法专项+典型例题 不等式的证明是数学证题中的难点,其原因是证明无固定的程序可循,方法多样,技巧性强。 1、比较法(作差法) 在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。 例1、已知:0>a ,0>b ,求证:ab b a ≥+。 2、分析法(逆推法) 从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。 例2、求证:15175+>+。 3、综合法 证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。 例3、已知:a ,b 同号,求证:2≥+b a 。 4、作商法(作比法) 在证题时,一般在a ,b 均为正数时,借助 1>b a 或1> b a ,求证:a b b a b a b a >。

a b b a b a b a >。 5、反证法 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。 例5、已知0>>b a ,n 是大于1的整数,求证:n n b a >。 6、迭合法(降元法) 把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。 例6、已知:122221=+++n a a a ,12 2221=+++n b b b ,求证:12211≤+++n n b a b a b a 。 证明:因为122221=+++n a a a ,12 2221=+++n b b b , 所以原不等式获证。 7、放缩法(增减法、加强不等式法) 在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。 例7、求证:01.09999531

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

异面直线典型例题

典型例题一 例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线 C .平行直线 D .相交直线或异面直线 分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论. 解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D . 说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置 b 异面,b , c 异面,则 关系是相交、平行或异面.类似地;a , a ,c 的位置关系是平行、相交或异 面.这些都可以用正方 体模型来判断. 典型例题二 例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性. 存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象.

因此,这是否定性...命题,常用反证法. 证明:(1)存在性. ∵ a A ?,∴ a 和A 可确定一个平面α, 由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性 假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与 A c b = 矛盾, ∴ 过点A 有一条且只有一条直线和a 平行. 说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性. 典型例题三 例3 如图所示,设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且 λ==AD AH AB AE ,μ==CD CG CB CF ,求证: (1)当μλ=时,四边形EFGH 是平行四边形; (2)当μλ≠时,四边形EFGH 是梯形. 分析:只需利用空间等角定理证明FG EH //即可. 证明:连结BD , 在ABD ?中,λ==AD AH AB AE ,∴ BD EH //,且BD EH λ=. 在CBD ?中,μ==CD CG CB CF ,∴ BD FG //,且BD FG μ=. ∴ FG EH //, ∴ 顶点E ,F ,G ,H 在由EH 和FG 确定的平面内. (1)当μλ=时,FG EH =,故四边形EFGH 为平行四边形; (2)当μλ≠时,FG EH ≠,故四边形EFGH 是梯形. 说明:显然,课本第11页的例题就是本题(2)的特殊情况.

定积分

第九章 定积分 P.206 习题 1.按定积分定义证明: )(a b k kdx b a -=? 证明 对],[b a 的任一分割T :b x x x a n =<<<=Λ10,其Riemann 和为 )()()()(1 11 11 a b k x x k x x k x f n i i i n i i i n i i i -=-=-=?∑∑∑=-=-=ξ,所以当分割的模0 →T 时,积分和 ∑ =?n i i i x f 1 )(ξ的极限为)(a b k -,从而)(a b k kdx b a -=? 2.通过对积分区间作等分分割,并取适当的点集}{i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: ⑴ ? 10 3dx x 解 因为3)(x x f =在]1,0[连续,故3 x 在]1,0[的定积分存在。现在将]1,0[n 等分, 其分点为:n i x i =,n i ,,1,0Λ=,i ξ取为小区间],1[n i n i -的右端点,于是Riemann 和为 )(41)1(4 111 1)()(2 241 34 131 ∞→→ +?= ==?∑∑∑ ===n n n n i n n n i x f n i n i n i i i ξ,所以 4 1 10 3= ? dx x ⑵ ? 10 dx e x 解 因为x e x f =)(在]1,0[连续,故)(x f 在]1,0[的定积分存在。现在将]1,0[n 等 分,其分点为:n i x i = ,n i ,,1,0Λ=,i ξ取为小区间],1[n i n i -的右端点,于是Riemann 和为 )(11) 1(111)(1 111 1 ∞→-→--?===?∑∑∑ ===n e e e e n e n n e x f n n n i n i n i n i n i i i ξ

浙教版八年级数学下册 反证法教案

《三角形的中位线》教案 教学目标 1、了解反证法的含义. 2、了解反证法的基本步骤. 3、会利用反证法证明简单命题. 4、了解定理“在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交”“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”. 教学重难点 本节教学的重点是反证法的含义和步骤. 课本“合作学习”要求用两种方法完成平行线的传递性的证明,有较高难度,是本节教学的难点. 教学过程 一、情境导入 故事引入“反证法”:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李.”小伙伴摘取一个尝了一下,果然是苦李. 王戎是怎样知道李子是苦的?他运用了怎样的推理方法? 我们不得不佩服王戎,小小年纪就具备了反证法的思维.反证法是数学中常用的一种方法.人们在探求某一问题的解决方法而正面求解又比较困难时,常常采用从反面考虑的策略,往往能达到柳暗花明又一村的境界. 那么什么叫反证法呢?(板书课题) 二、探究新知 (一)整体感知 在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义,公理,定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确.这种证明方法叫做反证法. 用反证法证明命题实际上是这样一个思维过程:我们假定“结论不成立”,结论一不成立就会出毛病,这个毛病是通过与已知条件矛盾,与公理或定理矛盾的方法暴露出来的.这个毛病是怎么造成的呢?推理没有错误,已知条件,公理或定理没有错误,这样一来,唯一有错误的地方就是一开始的假定.既然“结论不成立”有错误,就肯定结论必然成立了.

相关主题