搜档网
当前位置:搜档网 › GSM手机工作原理

GSM手机工作原理

GSM手机工作原理
GSM手机工作原理

GSM手机的基本工作原理

发射频率:GSM为935-960M,DCS为1805-1880M;接收频率:GSM为890-915M,DCS为1710-1785M;一、GSM手机的基本组成部分

射频部分:天线及天线开关

接收部分:接收高频处理(滤波、放大、混频)

接收中频处理(滤波、放大、解调)

发射部分:发射高频处理(功率放大、滤波)

发射中频处理(调制、滤波、放大)

频率合成部分:接收本振RXVCO

发射本振TXVCO

时钟

逻辑音频部分:CPU

存储器(版本、码片、暂存)

音频处理(DSP、音乐IC)

供电部分:逻辑供电

射频供电

其他

界面部分:显示屏、SIM(UIM)卡、震动器、振铃、指示器等

二、GSM手机的基本工作原理

1、发射机(上变频)

信号流程:送话器将声音转化为模拟电信号,经过PCM编码,再将其转化为数字信号,经过逻辑音频电路中进行数字语音处理即进行:话音编码、信道编码、交织、加密、突发脉冲形成、TX I/Q 分离。分离后的四路TX I/Q信号到发射中频TX-IF电路完成I/Q调制,该信号与频率合成器的接收本振RXVCO和发射本振TXVCO的差频进行比较(即混频后经过鉴相),得到一个包含发射数据的脉动直流信号,去控制发射本振的输出频率,控制发射本振频率的精确性,作为最终的信号,经过功率放大,从天线发射。GSM手机发射电路一般采用以下三种类型的发射机:

A 、带有发射变换电路的发射机

B

、带发射上变频电路的发射机

C 、直接变频发射机

发射各部分功能电路 (一) 发射音频通道:MIC 将声音信号转换为模拟电信号,并只允许300-3400Hz 通过。模拟信号经过A/D

转换,变为数字信号,经过语音编码、信道编码、交织、加密、突发脉冲串的形成一系列处理,对带有发射信息、处理好的数字信号进行GMSK 编码并分离出4路I/Q 信号,送到发射电路。

(二) I/Q 调制:经过发射音频通道分离出来的4路I/Q 信号在在调制器中被调制在载波上,得到发射中

频信号TX-IF 。四路I/Q 调制所用的载波,一般由中频IC 内振荡电路或由二本振分频得到。在GSM 数字移动电话中,调制器和解调器有的集成在一个IC 内,有的分别集成在两个IC 中。

(三) 发射变换电路:四路TX I/Q 信号经过调制后得到TX-IF 信号后,在鉴相器(PD )中与TXVCO 和RXVCO

混频后得到的差频进行鉴相,得到误差控制信号去控制TXVCO 的输出频率的准确性。该电路一般被继承在中频IC 内部或前端IC 中,其工作原理如下图所示:

(四)发射本振TXVCO:由振荡器和锁相环共同完成发射频率的合成(GSM:890-915MHz,DCS:1710-1785 MHz),发射本振的去向有两个地方:一路经过缓冲放大后,送到前臵功放电路,经过功率放大后,从天线发射出去;另一路送回发射变换IC,在其内部与RXVCO经过混频后得到差频作为TX-IF的参考频率。

(五)环路低通滤波器LPF:低通滤波器是从零频率到某一频率范围内的信号能通过,而又衰减超过此频率范围的高频信号的元件。在此电路中的主要目的是:平滑CP-TX信号,以防止在进行信道切换时出现尖峰电压,防止对发射造成干扰,使CP-TX准确控制TXVCO振荡频率的精确性。(六)前置放大器:作用有两个,一是进行信号放大到一定的程度,以满足后级电路的需要;二是使发射本振电路有一个稳定的负载,防止后级电路对发射本振造成影响。

(七)功率放大器:作用是放大即将发射的调制信号,使天线获得足够的功率将其发射出去。它是手机中负担最重、最容易损坏的元件。引脚主要有:900M输入输出、1800M输入输出、电池供电VCC、频段切换BS、功率控制V APC、GND等。功控电压V APC一般为1.2-1.5V,空载时约为2V左右。(八)功率控制:功放的启动和功率控制是由一个功率控制IC来完成的,控制信号来自中频IC。功放的输出信号经过微带线耦合取回一部分信号送到功控电路,经过高频整流后得到一个反映功放大小的支流电平U,与来自基站的基准功率控制参考电平AOC进行比较,如果U

二、接收机(下变频)

信号流程:天线感应基站的信号,经过天线匹配电路和接收滤波(RX-FL)电路滤波后经低噪声放大器(LNA)放大,放大后的信号经过接收滤波后被送到混频器(MIX),与来自本机振荡电路压控振荡信号进行混频,得到接收中频信号(RX-IF),经过中频放大(IFA)后在解调器中进行正交解调,得到接收基带(RX I/Q)信号,接收基带信号在逻辑电路中经GMSK解调,进行去交织、解密、信道解码等DSP处理,再进行PCM解码,还原模拟话音信号,推动受话器送入人耳。GSM手机发射电路一般采用以下三种类型的接收机:

A、超外差一次混频接收机;即输入射频信号和一本振混频得到中频信号。

B、超外差二次混频接收机:有两个混频器,称为双超外差接收机;二次变频的第一次混频是射频射

频信号RF与一本振信号混频得到二者的差额为一中频信号IF1,第二次混频为一中频信号IF1与二本振信号混频得到二者的差额为二中频IF2。

C、直接变频线性接收机:零中频接收机,直接解调出I/Q信号,所以只有收发共用的调制解调载波

信号振荡器(SHFVCO),其振荡频率直接用于发射调制和接受解调(收、发时振荡频率不同)。

接收各部分功能电路

(一)天线开关:天线开关属于接收和发射共用,主要完成两个任务:一是完成接收和发射信号的双工切换,为防止相互干扰所以要有控制信号完成接收和发射的分离,控制信号来自CPU的RX-EN(接收启动)、TE-EN(发射启动),或由它们转换而得来的信号;二是完成双频和三频的切换,使手机在某一频段工作时,另外的频段空闲,控制信号主要来自切换电路。天线开关连接接收滤波和发射滤波。有的机器采用双工滤波器,将接收信号和发射信号分离,防止强的发射信号对接收机造成影响,双工器包含一个接收滤波器和发射滤波器,他们都是带通滤波器(BPF)。

(二)带通滤波器(BPF):带通滤波器只允许某一频段中的频率通过,而对于高于或低于这一频段的成分衰减。在高频放大器LNA前后一般都有。只允许GSM:935-960M或DCS:1805-1880M的频段进入接受机,得到纯净的射频信号进入混频器。

(三)低噪声放大器(LNA):一般位于天线和混频器之间,是第一级放大器,所以叫接收前端放大器或高频放大器。主要完成两个任务:一是对接收到的高频信号进行第一级放大,以满足混频器对输入的接收信号幅度的要求,提高接收信号的信噪比;二是杂一放大管的集电极上加了由电感(L)与电容(C)组成的并联谐振回路,选出我们所需要的频带,所以叫选频网络或谐振网络。出现故障则接收性能变差。一般采用分离元件或前端IC。

(四)混频器(MIX):混频器实际上是一个频谱搬移电路,它将包含接收信息的射频信号(RF)转化为一个固定频率的包含接收信息的中频信号,由于中频信号频率低、而且固定,容易得到比较大而且稳定的增益,提高接收机的灵敏性。他的主要特点是:它由非线性器件构成,MIX有两个输入端,一个输出端,均为交流信号。混频后可以产生许多新的频率在多个新的频率中选出我们需要的频率(中频),滤除其他成分后送到中放。将载波的高频信号不失真的变换为固定中频的已调信号,保持原调制规律不变。接收机中的MIX位于LNA和IFA之间,是接受机的核心。

(五)中频滤波器:中频滤波器在电路中个头最大,一般为低通滤波器,保证中频信号的纯净。

(六)中频放大器(IFA):接收机的主要增益来源,它一般都是共射极放大器,带有分压电阻和稳定工作点的放大电路。对工作电压要求高,一般用专门供电;一般集成在中频IC内或独立。

(七)解调器:调制的反过程,多数手机往往都是对零中频进行正交解调,得到四路基带I/Q信号,其中I信号为同相支路信号,Q信号为正交支路信号,两者相位相差90o,所以叫正交。从天线到I/Q解调,接收机完成全部任务。测量接收机都是测试I/Q信号,测到I/Q信号,说明前边各部分电路,包括本振电路都没有问题,接收机已经完成其接收任务,是射频电路和逻辑电路的分水岭。(八)数字信号处理(DSP):接收基带(I/Q)信号在逻辑电路中经GMSK解调,进行去交织、解密、信道解码等DSP处理,再进行PCM解码,还原模拟话音信号,推动受话器送入人耳。

三、频率合成SYN

概念:利用一块或少量晶体又采用综合或合成手段,可获得大量的不同的工作频率,而这些频率的稳定度和准确度或接近石英晶体的稳定度和准确度的技术为频率合成技术。

(一)频率合成的基本方法:

A.直接频率合成:使用谐波发生器、倍频器、分频器、混频器等部件对基准频率进行加、减、乘、除的基本运算,然后用滤波器滤出所需频率。一般很少使用。

B.锁相频率合成器:利用锁相环路(PLL)的特性,使VCO输出频率与基准频率保持严格的比例关系,并得到相同的频率稳定度。

定义:锁相环路是一种以消除频率误差为目的的反馈控制电路。

作用:使压控振荡输出振荡频率与规定基准信号的频率和相位都相同(同步)。

构成:由鉴相器(PD),低通滤波器(LPF),压控振荡器(VCO)三部分组成。

鉴相器(PD):是一个相位比较器,VCO输出的振荡频率送回一个取样信号与基准频率进行鉴相。

使鉴相器送出一个与相位误差成比例的误差电压。

C、直接数字频率合成:利用计算机直接生成所需要的频率,在微电脑的控制下自动分频。

(二)手机中的频率合成

32.768KHz:手机休眠时的实时时钟和用与提供时间显示的时钟,均为32.768K。

13M晶体振荡电路:在手机中主要有两个方面的作用:一是作为整个系统的主时钟,控制逻辑电路个部件同步工作;二是作为基准参考信号,去接收本振和中频振荡器锁相环的鉴相器与振荡频率进行鉴相,从而产生误差信号去控制振荡频率。目前主要有两种电路方式:①由一个13M石英晶体、集成电路、外接元件构成晶体振荡电路;②是13M的晶体及变容二极管、三极管、电阻、电容等构成的13M震荡电路及PLL全部集成在一个模块上,组成一个完整的晶体振荡电路,可以直接输出13M时钟信号。基准时钟VCO组件一般有4个端口:13M输出端、电源端、AFC控制端、接地端。还有一些品派的手机的基准时钟是26M进行2分频得到13M;三星A188采用的是19.5M的5分频得到3.9M作为主时钟。

(三)第一本振(摩托罗拉手机叫RXVCO,诺基亚叫UHFVCO,三星叫RX-LO)

在手机中,一本振和二本振都是收发共用电路,均采用锁相环路。一本振的震荡频率与射频信号相接近,在逻辑电路的控制下,自动跟踪信道,该信号在手机电路中主要去向两个地方:①去接收电路的第一混频器,与高频放大之后的接收信号进行混频,得到二者的差频——中频信号;②去发射混频;③拿回一个取样信号去PLL的鉴相电路与基准时钟信号去PLL的鉴相电路与基准时钟信号13M 鉴相,得到误差

信号去控制接收本振的准确性;

PLL合成有三方面的控制:

A、控制:当射频信号进入某一信道,一本振必须马上跟踪进入该信道才能得到固定的中频频点。来

自逻辑路的SYS-EN、SYS-CLK、SYS-DA T的三路控制完成任务,通过由逻辑路提供的SYS-DAT,对VCO合成环路中的程控分频器进行编程来实现的。

B、V CO振荡频率精度的控制。

C、对工作频段的切换控制。

(四)第二本振(摩托罗拉手机叫IFVCO,诺基亚叫VHFVCO,三星叫IF-LO)

在手机中,第二本振主要的去向有:①与一中频混频得到二中频;②作为接收解调参考信号;③在自身PLL中与13M鉴相;④在发射电路中作为发射中频的调制载波;摩托罗拉的二本振均为中频的二倍。单频机均为独立元件,双频机一般集成在中频IC或频率合成IC。

四、音频逻辑系统

(一)中央处理器CPU

功能:操作控制、程序控制、时间控制、数据加工;

内部结构:控制器、运算器、寄存器;

外部电路:地址总线AB(单向传输)、数据总线DB(双向传输)、控制总线CB(单向传输)

工作条件:A、CPU供电VDD B、时钟CLK C、复位RST 三个条件缺一不可;

(二)存储器ROM

版本或字库:EPROM存储手机主程序(基本程序、功能程序、监控程序、中文字库、外围参数)。

码片:EEPROM以二进制代码的形式存储手机的资料,但是它存储的是:手机的机身码、检测程序、功率控制PA、数摸转换DAC、自动增益控制AGC、自动功率控制AFC、

手机的随机资料等,码片一般有8脚。它的各引脚功能如下图:

(三)随机存储器RAM,既暂存器。

(四)数据的存取,数据存储在具有存储功能的存储器中,对存储器中的数据进行读/写起码需要下列两条控制线:①区分读/写操作(R/W)控制线,连接CPU的R/W端,由CPU决定;②片选

控制线(CS),有时也称片选启动控制线(CE)。

手机常用元器件的识别与检测

手机电路中的基本元器件

手机电路中的基本元件主要包括电阻、电容、电感、晶体管等。由于手机体积小、功能强大,电路比较复杂,决定了这些元件必须采用贴片式安装(SMD),片式元件与传统的通孔元器件相比,贴片元件安装密度高,减小了引线分布的影响,降低了寄生电容和电感,高频特性好,并增强了搞电磁干扰和射频干扰能力。

一、电阻

表面贴片安装的电阻元件外型多呈薄片形状,引脚在元器件的两端。电阻一般为黑色,手机中的电阻大多末标出其阻值,个别个头稍大的电阻在其表面一般用三位数表示其阻值的大小,三位数的前两位数是有效数字,第三位数是10的指数。如100表示10n,102表示1000n即1kn,当阻值小于10n时,以*R*表示,将R看作小数点,如5R1表示5.1Ω。

个别手机采用了组合电阻,如诺基亚8210手机的R805、R120就采用了组合电阻,共有四个引脚和外电路相连。

二、电容

在手机中,电容一般为黄色或淡蓝色,个别电解除电容也用红色的,电解电容稍大,无极性电容很小,最小的只有1mmx2mm,有的电容在其中间标出两个字符,大部分电容则未标出其容量。手机中的电解电容,在其一端有一较窄的暗条,表示该端为其正极。对于标出容量的电容,一般其第一个字符是英文字母,代表有效数字,第二个字符是数字,代表10的指数,电容单位为pF。例,一个电容器标注为G3,通过查表,查出G=1.8,3=103,那么,这个电容器的标称值为1.8x103=1800pF。电解电容器当其外壳极性标志不清时,可用下述方法进行判别:用指针式万用表的R×10K挡,分别两次对调测量电容器两端的电阻值,当表针稳定时,比较两次测量的读数的大小,取值较大的读数时,这时万用表黑笔接的是电容器的正极,红笔接的是电容器的负极,其原理一是利用了万用表内部的电池用电源,二是利用了电解电容反向漏电流比正向漏电流大的特性。

三、电感和微带线

电感是一个电抗器件,它在电子电路中也经常使用。将一根导线绕在铁芯或磁芯上或一个空心线圈就是一个电感。在手机电路中,一条特殊的印刷铜线即构成一个电感,在一定条件下,又称其为微带线。电感的主要物理特征是将电能转换为磁能并储存起来,也可说它是一个储存磁能的元件。电感是利用电磁感应的原理进行工作的。当有电流流过某一根导线时,就会在这根导线的周围产生电磁场,而这个电磁场又会对处在这个电磁场范围内的导线产生电磁感应现象。与手机板上的电阻、电容不同的是,手机电路中的电感的外观形状多种多样,有的电感很大,从外观上很容易判断;但有的电感的外观形状和电阻。电容的外观相差不大,很难判断。用万用表的欧姆档可以检查电感是否开路。手机电路中比较常见的电感有以下几种:一种是两端银白色,中间是白色的;另一种是两端是银白色,中间是蓝色的。还有一种电源电路的电感,体积比较大,一般为圆形或方形,黑色,很容易辨认。如摩托罗拉V998手机的储能电感L901(黑色,方形),三星188手机的储能电感L401(黑色,圆形)等。需要说明的是:在部分手机电路中,还常常用一段特殊形状的铜皮来构成一个电感。通常我们把这种电感称为印刷电感或微带线。在手机电路中,微带线一般有两个方面的作用。一是它把高频信号能较有有效有传输;二是微带线与其它固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载能很好地匹配。微带线耦合器常用在射频电路中,特别是接收的前级和发射的末级。用万用表量微带线的始点和末点是相通的,但绝不能将始点和末点短接。

四、二极管

1、普通二极管

普通二极管利用二极管的单向导电性来工作的,有两个引脚,一般为黑色,在其一端有一白色的竖条,表示该端为负极。

2.稳压二极管

稳压二极管简称稳压管,是利用二极管的反向击穿特性来工作的。在手机电路中,它常常用于受话器(喇叭、扬声器)电路、振动器电路和铃声电路。由于手机电路所使用的受话器、蜂鸣器和振动器都带有线圈,当这些电路工作时,由于线圈的感生电压会导致一个很高的反峰电压,稳压二极管就是用来防止这个反峰电压引起电路损坏的。另外,在手机的充电电路、电源电路也较多地采用了稳压二极管。

3.变容二极管

变容二极管是采用特殊工艺使PN结电容随反向偏压变化比较灵敏的一种特殊二极管。二极管结电容的大小除了与本身结构和工艺有关外,还与外加的反向电压有关。与一般的二极管不同的是,变容二极管需要反向偏压才能正常工作,即变容二极管的负极接电源的正极,变容二极管的正极接电源的负极。当变容二极管的反向偏压增大时,变容二极管的结电容变小;当变容二极管的反向偏压减小时,变容二极管的结电容增大。变容二极管是一个电压控制元件,通常用于振荡电路,与其他元件一起构成VCO(压控振荡器)。在VCO电路中,主要利用它的结电容随反偏压变化而变化的特性,通过改变变容二极管两端的电压便可改变变容二极管电容的大小,从而改变振荡频率。一般情况下,在手机电路中,只要看到变容二极管的符号,基本上可以断定这个电路是一个压控振荡器。变容二极管既然是一个电压控制元件,那么它所存在的电路就有一个电压控制信号。在手机电路中,这个电压控制信号是来自频率合成环路中的鉴相器输出端。

4.发光二极管

发光二极管在手机中主要被用来作背景灯及信号指示灯,发光二极管一般分发红光、绿光、黄光等几种,发光二极管的发光的颜色取决于制造材料。发光二极管对工作电流有要求,一般为几毫安(mA)至几十毫安,发光二极管的发光强度基本上与发光二极管的正向电流成线形关系。但如果流过发光二极管的电流太大,就有可能造成发光二极管损坏。在实际运用中,一般在二极管电路中串接一个限流电阻,以防止大电流将发光二极管损坏。发光二极管只工作在正偏状态。正常情况下,发光二极管的正向电压在1.5-3V之间。另外,还有一些特殊的发光二极管,如红外二极管。目前越来越多的手机中都使用了红外发光二极管,它被用来进行红外线传输。

5.组合二极管

组合二极管,也就是说,由几个二极管共同构成一个二极管模块电路。如三星A288手机开关机控制电路的D107就是一个组合二极管,内部集中了四个二极管共同构成一个模块结构,组合二极管还有三支脚、四支脚的,这些组合二极管在三星手机中应用较多。

五、三极管

1.三极管的结构

手机电路中使用的三极管都是SMD器件,从电路结构上可分为以下几种:

(1)普通三极管

普通三极管有三个电极的,也有四个电极的。四个引脚的三极管中,比较大的一个引脚是三极管输出端,另有两个引脚相通是发射极,余下的一个是基极。晶体三极管的外型和双二极管(即两个二极管组成的元件,也为三个引脚)、场效应管极为相似,判断时应注意区分,以免造成误判。

(2)带阻三极管

带阻三极管是由一个三极管及一、二个内接电阻组成的。带阻三极管在电路中使用时相当于一个开关电路,当状态转换三极管饱和导通时Ic很大,ce间输出电压很低,当状态转换三极管截止时,Ic很小,ce间输出电压很高,相当于VCC(供电电压)。管子中的R1决定了管子的饱和深度,R1越小,管子饱和越深,Ic电流越大,ce间输出电压很低,抗干扰能力越强,但R1不能太小,否则会影响开关速度。R2的作用是为了减小管子截止时集电极反向电流,〃并可减小整机的电源消耗。带阻三极管外观结构上与普通三极管并无多大区别,要区分它们只能通过万用表进行测量。

(3)组合三极管

所谓组合三极管,就是由几个三极管共同构成一个模块。组合三极管在手机电路中得到了广泛的应用。如摩托罗拉V998手机的混频管Q1254、三星A188手机的开机控制管U608等都是组合三极管。

2.三极管的判别

(1) 管脚的判别

将万用电表臵于电阻Rxlk挡,用黑表笔接三极管的某一管脚(假设作为基极),再用红表笔分别接另外两个管脚。如果表针指示的两次都很大,该管便是PNP管,其中黑表笔所接的那一管脚是基极。若表针指示的两个阻值均很小,则说明这是一只NPN管,黑表笔所接的那一管脚是基极。如果指针指示的阻值一个很大,一个很小,那么黑表笔所接的管脚就不是三极管的基极,再另换一外管脚进行类似测试,直至找到基极。判定基极后就可以进一步判断集电极和发射极。仍然用万用表Rxlk档,将两表笔分别接除基极之外的两电极,如果是PNP型管,用一个100k电阻接于基极与红表笔之间,可测得一电阻值,然后将两表笔交换,同样在基极与红表笔间接100k电阻,又测得一电阻值,两次测量中阻值小的一次红表笔所对应的是PNP管集电极,黑表笔所对应的是发射极。如果NPN型管,电阻100k就要接在基极与黑表笔之间,同样电阻小的一次黑表笔对应的是NPN管集电极,红表笔所对应的是发射极。在测试中也可以用潮湿的手指代替100k电阻捏住集电极与基极。注意测量时不要让集电极和基极碰在一起,以免损坏晶体管。

(2)锗管和硅管的判别

数字万用表测管子基极和发射极PN结的正向压降,硅管的正向压降一般为0.5—0.8V,锗管正向压降,一般为0.2—0.4V。

六、场效应管

场效应管与三极管相似,但两者的控制特性却截然不同,三极管是电流控制元件,通过控制基极电流达到控制集电极电流或发射极电流的目的,即需要信号源提供一定的电流才能工作,因此,它的输入电阻较低,场应管则是电压控制元件,它的输出电流决定于输入电压的大小,基本上不需要信号源提供电流,所以,它的输入阻抗很高,此外,场效应管还具有开关速度快、高频特性好、热稳定性好,功率增益大、噪声小等优点,因此,在手机电路中得到了广泛的应用。场效应管分为普通场效应管和组合场效应管,外观结构和普通三极管及组合三极管相似,维修和代换时应注意区分。场效应管按其结构的不同可分为结型场效应管和绝缘栅(金属氧化物)场效应管两种类型,其中金属氧化物场效应管在手机中应用最多。手机使用的金属氧化物功率场效应管,多数采用N沟道场效应管,个别则采用了P沟道场效应管,检修时应加以区分。

1.结型场效管的判别

将万用表臵于RXlk档,用黑表笔接触假定为栅极G管脚,然后用红表笔分别接触另两个管脚。若阻值均比较小(约5'--10欧),再将红、黑表笔交换测量一次。如阻值均很大,属N沟道管,且黑表接触的管脚为栅极G,说明原先的假定是正确的。同样也可以判别出P沟道的结型场效应管。

2.金属氧化物场效应管的判别

(1)栅极G的判定

用万用表Rxl00挡,测量功率场效应管任意两引脚之间的正、反向电阻值,其中一次测量中两引脚电阻值为数百欧姆,这时两表笔所接的引脚是D极与S极,则另一引脚未接表笔为G极。

(2)漏极D、源极S及类型的判定

用万用表RxlokD,挡测量D极与S极之间正、反向电阻值,正向电阻值约为0.2x10kfl,反向电阻值在(5—∞)x10kfl。在测反向电阻时,红表笔所接引脚不变,黑表笔脱离所接引脚后,与G极触碰一下,然后黑表笔去接原引脚,此时会出现两种可能:若万用表读数由原来较大阻值变为零,则此时红表笔所接为S极,黑表笔所接为D极。用黑表笔触发G极有效(使功率场效应管D极与S极之间正、反向电阻值均为012),则该场效应管为N沟道型。若万用表读数仍为较大值,则黑表笔接回原引脚不变,改用红表笔去触碰G极,然后红表笔接回原引脚,此时万用表读数由原采阻值较大变为0,则此时黑表笔所接为S极,红表笔所接为D极。用红表笔触发G,极有效,该场效应管为P沟道型。

(3)金属氧化物场效应管的好坏判别

用万用表Rxlkll挡去测量场效应管任意两引脚之间的正、反向电阻值。如果出现两次及两次以上电阻值较小(几乎为0xkll),则该场效应管损坏;如果仅出现一次电阻值较小(一般为数百欧姆),其余各次测量电阻值均为无穷大,还需作进一步判断。用万用表Rxlkfl挡测量D极与S极之间的正、反电阻值。对于N沟道管,红表笔接S极,黑表笔先触碰G极后,然后测量D极与S极之间的正、反向电阻值。若测得正、反向电阻值均为0fl,该管为好的,对于P沟道管,黑表笔接S极,红表笔先触碰G极后,然后测量D极与S极之间的正、反向电阻值,若测得正、反向电阻值均为01l,则该管是好的。否则表明已损坏。需要说明的是:金属氧化物场效应管其栅极很容易感应电荷而将管子击穿,维修时应注意防静电。

手机电路中的特殊元器件

一、开关元件

开关、干簧管和霍耳元件都是用来控制线路的通断的器件。不同的是开关一般是人工手动操作的,而干簧管和霍克元件则是通过磁信号来控制线路的通和断。

1.开关

在手机中使用的开关通常是薄膜按键开关,它由触点和触片组成。按键的两个触点平时都不和触片接触,当按下按键时,触片同时和两个触点接触,使两个触点所连接的线路接通。这种开关通常用于电源开关及各种按键。在手机上,薄膜按键开关在机板上通常由铜皮做成,然后用一有碳膜的按键胶片来完成这种开关的连接。在手机电路中,开关通常用字母SW表示,电源开关又经常使用ON/OFF或PWRON等字母来表示。另外,诺基亚8810、8210、8850等滑盖式手机,有电路板上有一个用于挂机的开关,如要挂机,将滑盖推上,滑盖压迫挂机开关导致其中的开关两点相通,从而起到了挂机的作用。

2.干簧管

干簧管是利用磁场信号来控制的一种线路开关器件。干簧管又被称为磁控管。干簧管的外壳一般是一根密封的玻璃管,在玻璃管中装有两个铁质的弹性簧片电极,玻璃管中充有某种惰性气体。平时玻璃管中的两个簧片是分开的,当有磁性物质靠近玻璃管时,在磁场磁力线的作用下,管内的两个簧片被磁化而互相吸引接触,使两个引脚所接的电路连通。外磁场消失后,两个簧片由本身的弹性而分开,线路就断开。在实际运用中,通常使用磁铁采控制这两根金属片的接通与否,所以,又称其为磁控管。磁控管在手机中常常被用于翻盖手机、折叠式手机电路中,特别是摩托罗拉、爱立信、三星手机使用最多。通过翻盖的动作,使翻盖上磁铁控制磁控管闭合或断开,从而挂断电话或接听电话等。在采用干簧管结构的手机中,除有一个干簧管外,还有有一个辅助磁铁,手机在通话时,磁铁应远离干簧管,故这类手机有个共同的特点,就是磁铁在翻盖上(翻盖式手机)或听筒旁(折叠式手机)。如果手机既不是折叠式,又不是翻盖式,则不需采用干簧管。干簧管本身是一种玻璃管,而玻璃易碎,所以干簧管很容易损坏,特别是摔过的手机尤其如此,因此,目前一些新式的折叠式和翻盖式手机已不再采用干簧管,而采用了原理与干簧管类似的霍耳元件。当干簧管损坏时,手机会出现一些很复杂的故障,如部分或全部按键失灵、开机困难、不显示等。因此,在检修手机开机困难、按键失灵、不显示等故障时,不可忘记对干簧管的检查。

3.霍克元件

霍克传感器的作用与干簧管一样,工作原理非常相似的,都是在磁场作用下直接产生通与断的动作。霍克传感器是一种电子元件,其外型封装很似三极管,它由霍克元件、放大器、施密特电路及集电极开路输出三极管组成。当磁场作用于霍克元件时产生一微小的电压,经放大器放大及施密特电路后使三极管导通输出低电平;当无磁场作用时三极管截止,输出为高电平。相对于干簧管来说,霍克传感器寿命较长,不易损坏。且对振动,加速度不敏感。作用时开关时间较快,一般为0.1~2ms,较干簧管的1~3ms快得多。爱立信T28型手机就是应用这种开关型的电子元件来作为翻盖开关的。电源来自于电池电压。当翻盖合上时,盖板中的管场作用于霍克传感器,霍克传感器电路内的三极管导通,从传感器第一脚输出低电平。如果在通话时,便作为挂机信号送给微处理器挂机。当打开翻盖时,霍克传感器不受磁场感应,霍克传感器电路中的三极管截止,输出的电平为高电平,该信号如果是在来电时产生的,输送给微处理器时,CPU便作为提机信号而接听电话;如果是单一的打开翻盖时,该高电平信号由微处理器作为背景灯控制信号使背景灯发亮。

二、电声和电动元件

电声器件就是将电信号转换为声音信号或将声音信号转换为电信号的器件。包括扬声器、振铃、耳机、送话器等。电动器件主要是指手机的振动器即振子。

1.受话器

受话器是一个电声转换器件,它将模拟的话音电信号转化成声波。受话器又称为听筒、喇叭、扬声器等。受话器通常用字母SPK、SPEAKER及EAR和EARPHONE等表示。一般的受话器在工作时是利用电感的电磁作用的原理,即在一个放于永久磁场中的线圈中以声音的电信号,使线圈中产生相互作用力,依靠这个作用力来带动受话器的纸盆震动发声。放在永久磁场中的这个线圈,被称为“音圈”。另外还有一种高压静电式受话器,它是通过在两个靠得很近的导电薄膜之间加上高话音电信号,使这两个导电薄膜由于电场力的作用而发生振动,来推动周围的空气振动,从而发出声音。这种受话器目前在手机中使用越来越多。可以利用万用表对受话器进行简单的判断。一般受话器有一个直流电阻,而且电阻值一般在几十欧,如果直流电阻明显变得很小或很大,则需更换受话器。

2.振铃

手机的振铃(也称蜂鸣器)一般是一个动圈式小喇叭,也是一种电声器件,其电阻在十几欧到几十欧。手机的按键音一般是由振铃发出的,一些维修人员错误地认为手机的按键音是由听筒发出的,在维修“听不到对方讲话”故障时,但手机有按

键音,感到比较疑惑,其原因就在于此。振铃一般用字母BUZZ表示。

3.耳机

耳机是缩小了的扬声器。它的体积和功率都比扬声器要小,所以它可以直接放在人们的耳朵旁进行收听,这样可以避免外界干扰,也避免了影响他人。目前所有的耳机基本上都是动圈式的。耳机的结构及工作原理和扬声器基本上是一样的。 4.送话器

送话器是用来将声音转换为电信号的一种器件,它将话音信号转化为模拟的话音电信号。送话器又称为麦克风、咪、微音器、拾音器等。送话器用字母MIC或Microphone表示。在手机电路中用的较多的是驻极体送话器,驻极体送话器实际上是利用一个驻有永久电荷的薄膜(驻极体)和一个金属片构成的一个电容器。当薄膜感受到声音而振动时,这个电容器的容量会随着声音的震动而改变。但是驻极体上面的电荷量是不能改变的,所以这个电容两端就产生了随声音变化的信号电压。驻极体送话器的阻抗很高,可达100M欧。送话器有正负极之分,在维修时应注意,如极性接反,则送话器不能输出信号。另外,送话器在工作时还需要为其提供偏压,否则,也会出现不能送话的故障。有一种简单的方法可以判断受话器是否损坏:将数字万用表的红表笔接在送话器的正极,黑表笔放在送话器的负极(如用指针式万用表则相反),对着送话器说话,应可以看到万用表的读数发生变化或指针摆动。

5.振动器

振动器就是电动机,在手机电路中,振动器用于来电提示。振动器通常用VIB或Vibrator表示。

三、滤波器

滤波器是由集总参数R、L、C构成或其等效电路构成。具有分离信号、抑制干扰、阻抗变换与阻抗匹配和延迟信号等作用。在移动通信终端如手机、BP机中,往往需要衰减特性很陡的带通滤波器。如采用普通电容、电感来构成的滤波电路来代替滤波器,必然使用的元件很多,电路复杂。并且在高频运用时,电感和电容的Q值降低,导致性能变差。而采用滤波器不仅能使整机电路简单、紧凑,而且性能稳定,给维护带来方便。

1.滤波器的分类

滤波器按所采用的材料分有声表面滤波器、晶体滤波器和陶瓷滤波器。

声表面滤波器是在单晶材料上采用半导体平面工艺制作,具有良好的一致性和重复性,极高的温度稳定性。还具抗辐射能力强,动态范围大,不涉及电子迁移等特点。这种滤波器常用在手机或无线寻呼机的第一中频电路作为一中频滤波器对信号进行滤波。晶体滤波器具有品质因数高、衰减特性好、损耗小、选择性高等优点。摩托罗拉系列寻呼机常用作第一中频滤波器。陶瓷滤波器是一种固体电路,具有滤波特性好,不需调谐,不受磁场干扰的特点,且造价低,在移动通讯终端如手机中常用作为中频滤波器器件。使中频信号稳定,不易受外部磁场干扰。滤波器按其所起的作用来分,有双工滤波器、射频滤波器、中频滤波器及低通滤波器等。滤波器按通过信号的频率分为高通滤波器、低通滤波器和带通滤波器等。滤波器在手机电路中起的作用,简单地说就是允许或不允许某部分信号经过。高通滤波器只允许比某个频率高的信号通过;低通滤波器则只允许比某个频率低的信号通过;带通滤波器只允许某个频率范围的信号通过。由于移动通信终端(如手机、寻呼机)元器件均采用贴片封装,这些滤波器相对表面积较大,容易出现虚焊或接触不良,影响正常使用。特别是经摔过的手机或寻呼机出现不能正常接收信号或信号变差。常是这些滤波器虚焊或性能变差造成的。此外,对于陶瓷滤波器还有因受潮而出现信号衰减过大的故障。所以在维修手机过程中,对于接收信号不稳定或信号弱的手机;用热风枪吹焊一下接收电路的滤波器,故障就能排除;

2.常用滤波器

(1)双工滤波器:手机是一个双工收发信机,它有接收、发射信号。GSM手机既可用双工滤波器来分离发射接收信号,又可以由天线开关电路来分离发射接收信号。双工滤波器在其表面上一般有“TX”(发射)“RX”(接收)及“ANT”(天线)字样。双工滤波器有时也称“收发合成器”、“合路器”等。现在一些手机的天线开关电路采用了双讯器,实际上是一种带开关功能的双工滤波器。双工滤波器是介质谐振腔滤波器,它由一个介质谐振腔构成,在更换这种双工滤波器时应注意焊接技巧,否则,可能将双工滤波器损坏。

(2)射频滤波器:射频滤波器通常用在手机接收电路的低噪声放大器、天线输入电路及发射机输出电路部分。它是一个带通滤波器,如接收电路GSM射频滤波器只允许GSM接收频段的信号(935~960MHz)通过;发射GM、DCS射滤波器允许GSM、DCS发射频段的信号通过等。当然,射频滤波器还有很多,但不管其形状或材料如何,所起的作用大都如此。

(3)中频滤波器:中频滤波器在手机电路中很重要,它对接收机的性能影响很大。不同的手机,中频滤波器可能不一样。但通常来说,接收电路的第一混频器后面的一中频滤波器较大,第二中频滤波器则较小。如一部手机的接收电路,有两个中频,则第二中频滤波器通常对接收电路的性能影响更大,其损坏会造成手机无接收、接收差等故障。在手机电路中,滤波器的引脚是在元件的下面,与阻容元件的相似,只不过是其引脚较多罢了。该种元件称为SON封装模块。

3.滤波器的结构

(1)单脚脚输入单脚输出结构:如摩托罗拉V998的GSM接收射频滤波器FLA60、DSC接收射频滤波器FLA50等都是这种结构。这种滤波器管脚虽然较多,但只有一个输入脚、一个输出脚,其余脚均接地。

(2)单脚输入双脚输出结构:如爱立信T28手机的接收GSM射频滤波器Z200、接收DCS射频滤波器N201等都是这种结构。这种滤波器除具有滤波作用外,还具有平衡/不平衡转换的作用,也就是说,它可以将一路不平衡信号转换为两路平衡信号输出。此类滤波器除一个输入脚、两个输出脚之外,其余脚均接地。

(3)双路输入双路输出结构:如诺基亚3310手机的接收GSM、DCS射频滤波器Z620、Z600等就采用了这种站构,实际上,这种滤波器是一种双工滤波器,也就是说,滤波器内部有两个滤波器,一个工作于GSM频段,另一个工作于DCS频段,只不过是把这两个滤波器组合在一起而已。滤波器的两个输入端中,一个为云如频段输入端,另一个为DCs频段输入端,两个输出端中,一个为GSM频段输出端,另一个为DCS输出端,其余脚均接地。

四、晶振和VCO组件

1.13MHz晶振和13MHzVCO

手机基准时钟振荡电路,是手机的二个十分重要的电路,产生的13MHz时钟,一方面为手机逻辑电路提供了必要条件,另一方面为频率合成电路提供基准时钟。手机的13MHz基准时钟电路,主要有两种电路:一是专用的13MHzVCO组件,它将13MHz的晶体及变容二极管、三极管、电阻电容等构成的13MHz振荡电路封装在一个屏蔽盒内,组件本身就是一个完整的晶振振荡电路,可以直接输出13MHz时钟信号。现在一些机型,如诺基亚3310、8210、8850手机等,使用的基准时钟VCO组件是26MHz,26MHzVCO电路产生的26MHz信号再进行2分频,来产生13MHz信号供其它电路使用。基准时钟VCO组件一般有4个端口:输出端、电源端、AFC控制端及接地端。另一种是由一个13MHz石英晶体、集成电路和外接元件构成晶振振荡电路,13MHz晶振在其上面一般标有”13”的字样。在一些新式机型,摩托罗拉V998、L2000等,使用的是26MHz晶振,三星A188手机使用的是19.5MHz晶振,电路产生的26MHz或19.5MHz信号再进行2或1.5倍分频,来产生13MHz信号供其它电路使用。单独的一个石英晶振是不能产生振荡信号的,它必须在有关电路的配合下才能产生振荡。从上可以看出,13MHz晶振和13MHzVCO是两种不同的元件,也就是说,13MHz晶振是一个元件,必须配合外电路才能产生13MHz信号。而13MHzVCO 是一个振荡组件,本身就可以产生13MHz的信号。

2.VCO组件

在手机射频电路中,除13MHzVCO外,还有一本振VCO(UHFVCO、RXVCO、RFVCO)、二本振VCO(1FVCO、VHFVCO)、发射VCO(TXVCO)等。VCO电路通常各采用一个组件,组成VCO电路的元件包含电阻、电容、晶体管、变容二极管等。VCO组件将这些电路元件封装在一个屏蔽罩内,既简化了电路,也减小了外界因素对VCO电路的干扰。VCO组件一般有4个引脚--输出端、电源端、控制端及接地端。VCO组件有规律可循,接地端的对地电阻为”O”;电源端的电压与该机的射频电压很接近;控制端接有电阻或电感,在待机状态下或按“112”启动发射时,该端口有脉冲控制信号;余下的便是输出端。

五、天线和地线

1. 天线

手机天线既是接收机天线又是发射机天线。由于手机工作在900MHz或1800MHz的高频段上,所以其天线体积可以很小。天线分为接收天线与发射天线。把高频电磁波转化为高频信号电流的导体就是接收天线。把高频信号电流转化为高频电磁波辐射出去的导体就是发射天线。在电路图上天线通常用字母“ANT”表示。随着手机小型化的发展,一些手机的天线通过巧妙的设计,变得与传统观念上天线大不一样。比如像诺基亚双频手机3310的天线,我们看起来它只不过是机壳上的一些金属镀膜。在手机维修过程中,若发现天线损坏,应尽量选用原装天线,不可随意用其它手机的天线进行代换,这并不是说其它天线增益低,引起手机信号差;更主要的原因是,天线是手机高频电路的匹配负载,如果代换不合适,将会造成电路不匹配,增大电路的功率损耗,烧坏高频元件,如功放、滤波器等,而且还会造成手机耗电快、发热等故障。

2.地线

电路中的地线是一个特定的概念,它不同于其他的器件,实际上找不出“地线”这么一个器件,它只是一个电压参考点。在电路图中经常用到的地线电路符号有两种,在实际的电路板上,一般情况下,大片的铜皮都是“地”。

六、电致发光板

电致发光板是一种发光器件,主要用于爱立信T28、三星A188、三星A288手机的显示屏背景灯电路,发光的原理是:荧光粉在交变电场的作用下被激发而发出光来,电致发光可发出红色、蓝色或绿色的光,T28手机发出的光是绿色。从外表看,T28手机的按键又厚又硬,而且还多出一块垫在LCD下面,其实,多出的这块长方形就为为LCD照明的,按键板上的白色的部分正好把按键包围起来,是照明按键的。之所以厚,是因为下面是按键板,上面是发光板,发光板的夹层中就是荧光粉,维修时决不能切开它,因为一旦切开,将失去发光功能。T28手机较为省电,很大程度上取决于该机采用了“电致发光”技术,一般手机的发光二极管有几个,一亮起来要耗电50mA左右,而T28手机只耗电10mA左右。电致发光需要的驱动电压较高(T28手机采用了170V峰-峰值的双向三角波),一般需要专门的电路来产生。

七、液晶显示器

1.液晶显示器的分类

手机上的显示器分为两种:一种是LED(发光二极管显示器),这种显示器耗电大,不能显示图形,目前的手机已不使用;另一种是LCD(液晶显示器)。LCD显示器耗电小,能显示图形符号,目前的手机都使用这种显示器来提供显示。显示器通常是一个模组,用专用的芯片来驱动。在手机电路中,常使用两种方法来将LCD连接到相应的电路:一是使用软导电排线;一是使用导电橡胶。如摩托罗拉V998手机使用软排线,而爱立信T28手机则使用导电橡胶。

2、液晶显示器的工作原理

手机液晶模块都是一种高度集成化的产物,其驱动方式主要有并口型(如摩托罗拉L200的显示器)和串口型(如爱立信T28手机的显示器)。并口型液晶中的D0~D7、ADR-LCD、RJW等信号和串口型液晶中的SCL、SDA功能一致,这些都是由主板上CPU输出的,控制手机的开屏、关屏、显示汉字等。在串口型液晶中,显示器接口一般还有一个VLCD端,用于调节液晶的显示对比度,根据具体模块有不同的控制电压,显示器接口的VCC(VDD)为供电端,GND(VSS)为接地端。工作原理是:液晶控制器接收CPU发过来的显示指令和数据,经分析判断、存储,按一定的时钟速度将显示的点阵信息输出至行和列驱动器进行扫描,以大于75Hz每帧的速率更新一次屏幕,则人眼在外界光的反射下,就感觉到液晶的屏幕上出现显示内容。

八、SIM卡座

卡座在手机中提供手机与SIM卡通信的接口。通过卡座上的弹簧片与SIM卡接触,不论什么机型的SIM卡,卡座都有几个基本的SIM卡接口端:即卡时钟(SIMCLK)、卡复位(SIMRST)、卡电源(SIMVCC)、地(SIMGND)和卡数据(SIMI/O或SIMDAT)。SIM卡时钟是3.25MHz;I/O端是SIM卡的数据输入输出端口。

九、霍尔元件

翔龙科技〃鲁茂章 2005-08-10

手机工作原理

一、CDMA手机饰品的闪光原理为什么中国移动GSM手机饰品挂在中国联通CDMA手机上不闪光?这要从CDMA和GSM手机的工作原理谈起,GSM手机是采取将语音打包压缩后发射出去的,也就是说间隙脉冲工作的,工作时提高发射功率来保持语音清晰,其余时间不发射。而CDMA手机基台采用了定向天线系统,当基台发现有手机要工作时,便会启动定向系统指向手机所在的方向并计算手机最经济的发射功率,使手机发射功率维持在比较低的水平,也就是说CDMA手机系统是充分利用基台的定向系统优势,而让手机工作在小功率状态(这就是大家看到的CDMA手机的电池容量可以比GSM手机容量小而使用时间长的原因)。这样CDMA手机系统便可采用连续工作的方式发射信号,而不像GSM手机脉冲工作方式那样工作时大功率发射。目前市面上手机饰品是为GSM手机设计的,也就是说利用了GSM手机脉冲工作时大功率发射信号来触发IC闪光的。但对于CDMA手机GSM手机饰品就不会闪光了。本公司在充分研究CDMA手机系统后,开发了CDMA手机闪光饰品,她能在CDMA手机工作时触发专用IC闪光。这是目前世界上真正的第一款CDMA手机来电闪光饰品。二、手机贴纸的闪光原理当手机向基台传送信号时,手机发射的是很强的电磁波。根据电磁理论,电磁波在空中遇到天线,在天线的中段就会产生电压和电流。闪光贴纸其实就是一根接收天线,它把手机的电磁波信号变为电压和电流导致发光。但是为什么只有NOKIA的手机使用贴纸效果最好呢?因为由于此类型的手机没有采用标准的高效率螺旋天线,为了达到通话清晰和不掉线的效果,此类手机设计时就增大了手机的发射功率。这也是此类手机电池不够其它手机电池使用时间长的原因。三、GSM手机饰品的闪光原理手机使用时,手机是一部信号发射接收器,不停地和基台进行接收和发射的交换。手机闪光饰品中有一块具有检测手机信号发射接收的专用IC,当接检测到手机有信号时,就启动IC工作―-发光或发声等等。早期的闪光吊饰采用的是通用IC,需要加外围电路来检测手机的信号,这样做体积大,不适用产品的小型化。而现在把检测手机信号的外围电路和闪光IC集成一起。 GSM手机工作原理简介 发布时间:2006-10-18 图1 FDMA、TDMA及CDMA之间的对照图 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA的比较如图. 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是s,信道总传输速率s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet 公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=,每时隙为577us,每

GSM手机工作原理简介

GSM手机工作原理简介 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA 是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA 的比较 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是22.8kb/s,信道总传输速率270.83Kb/s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM 向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者X.25连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=4.625ms,每时隙为577us,每比特宽度为3.692us. 但它还要加入纠错编码.因为话音编码的比特重要性不同,一种是重要的称为I类比特,必需加以保护,即规则脉冲编码与LPC参数比特共182个,加上3位奇偶检验比特,及4位尾比特共189比特.纠错编码使用1/2码率的卷积码,因此共编码为378个比特.260比特中的其余78个比特,则不加以保护.这样加起来,每20ms 的总输出是456比特. 为了防止抗衰落引起的突了误码,编码后的比特还须进行交织.交织的原理在此从略. 移动电话(以下均称手机)电路结构可分为四个部分:无线部分、传输处理部分、接口部分、电源部分。其电路原理可归纳为两大部分:射频电路和基带电路。 1.无线部分 包括天线回路、发送、接收、调制解调和振荡器等高频系统.其中发送部分由射频功率放大器、带通滤波器组成.接收部分由高频滤波、高频放大、变频及中频滤波器组成,调制解调器采用GMSK. 2.传输处理 2.1发送通道的处理包括语音编码、信道编码、加密、TDMA帧形成. 1)语音编码:用户的话音通过MIC转化成电信号,这个电信号通过ADC转化成数字的、代表语音的 13Kbitps的信息流。

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

手机射频系统工作原理和无信号、不发射等故障的检修

天线感应接收到1900MHz~1915MHz的高频信号,经过L101、C103、L105选频网络选择相应频率的高频信号,XFl01滤波器对信号提纯,进入功放ICl01的7脚,功放内部的奉线开关在CPU的控制下,自动闭合到接收通路,信号经过天线开关从20脚输出,由C117、L1 10耦合到ICl01的22脚。信号在ICl01内部,进行第一次的高频放在,然后进行第一次混频。 1900MHz~1915MHz的高频信号和1659.5MHz~1674.02MHz的一本振信号混频后(1C101的1脚输入),输出一个243.95MHz的中频信号,经过一级放大后,由ICl01的26脚输出。 该中频信号通过电容C123、C102耦合,中频滤波器XFl02滤波,输出信号再经过C130、C104、C132、L117耦合,从40脚进入中频ICl02内部,开始第二次混频。二本振信号频率为233.15MHz,经过混频后,从ICl02的38脚输出10.8MHz低频信号,低滤波器XFl03对该信号滤波后,再从36脚进入ICl02的内部进行二次中频放大,最后从31脚输出已放大的低频信号RXDATA,送入到逻辑电路进行解调(D/A转换,解码,放大)恢复为音频信号。 一本振、二本振信号由相应的本地振荡电路产生。 发射电路工作原理 CPU的8脚、9脚、11脚、12脚分别输出HQ+、HQ-、HI+、HI-四路已编码的模拟信号,分别从3脚、4脚、1脚、2脚进入中频ICl02,在中频ICl02内部经过三次混频电路、加法运算电路、运放电路调制后,低频率信号提升到1900MHz的频率,然后从46脚输出一路已经调制好的高频载波信号。 已调制的高频载波信号通过电感L105、L114、电阻R1、电容C128、C125耦合到高通滤波器XFl04,滤波后再次经过L121、Rll0耦合后,由14脚送入到功放ICl01内部进行功率电平放大,完成功率计整,天线开关闭合到发射通路,高频发射信号经过天开关XFl01滤波后,从天线发射出去。 中频ICl02内部三次混频电路所需的本振信号有两个,一是由接收二本振信号(223.15MH z)在中频ICl02内部的倍频器倍频后提供的,二是由一本振信号(1659.05MHz~1674.02MHz)提供,它作为本振信号直接参与最后一次混频。 总的看来,本机的收发混频都共用同样的本振信号,只不过是发射状态时本振信号还需要在ICl02的内部进行具体的频率变化的处理。 一、接收机电路工作原理与无接收信号、电话不能打入故障的检修 1、一本振电路原理 无论是接收信号,还是发射信号,都是要共用一本振电路提供混频时所需要的本振信号。 X102是压控振荡器(VC01),4脚是输入脚,l脚是输出脚,6脚是供电脚,2脚、3脚、5脚接地。 工作电平送入X102的4脚后,X102发生振荡频率。1脚输出振荡信号,其一部分反馈送回IC102的27脚,在中频ICl02的内部进行鉴相,和原来的工作电平进行比较,产生频率误差控制电压。然后从25脚输出、C22、R205、C223组成的环路滤波器,送X102的4脚。该误差控制电压改变X102内部的变容二极管的电容量,使得输出振荡信号的频率变化较小,从而稳定振荡信号的频率。 VCO PS为VCO启动允许电平,高电平有效(3V脉冲),由CPU的34脚送出。VCC_SYN为中频供电电压。Q103在VCO_PS高电平时导通,集电极输出3V电压作为VCO(X102)工作电压。 X102的1脚输出的振荡信号频率为1659.05MHz~1674.02MHz,它通过C150、R135耦合,从1脚输入到高频信号放大ICl06,4脚输出的就是一个已放大的一本振信号。ICl06的6脚为电压脚,2脚、3脚、5脚接地。

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

手机的工作原理

精品考试资料 学资学习网 手机的工作原理 一、手机的电路结构手机的结构可分为三部分,即射频处理部分、逻辑/音频部分以及输入输出接口部分主要电路组成: 1 射频部分一般指手机射频接收与射频发射部分,主要电路包括:天线、天线开关、接收滤波、高频放大、接收本振、混频、中频、发射本振、功放控制、功放等。 1.1 发送部分发部分包括带通滤波、中频、发射本振、射频功率放大器、发射滤波器、天线开关、天线等。 1.2 接收部分包括天线、天线开关、高频滤波、高频放大、混频、中频滤波和中频放大等电路。 对接收信号进行一级处理,最后得到推动听筒发声的音频信号。 解调大都在中频处理集成电路(IC)内完成,解调后得到频率相同的模拟同相/正交信号,然后进入逻辑/音频处理部分进行后级的处理。2逻辑/音频部分包括逻辑处理和音频处理两个方面的内容。 2.1 音频处理部分 2.1.1发送音频处理过程来自送话器的话音信号经音频放大集成模块放大后进行A/D 变换、话音编码、信道编码、调制,最后送到射频发射部分进行下一步的处理。 2. 1.2接收音频处理过程从中频输出的RXI RXQ信号送到调制解调器进行解

调,之后进行信道解码、D/A 变换,再送到音频放大集成模块进行放大。最后,用放大的音频信号去推动听筒发声。 2.2 逻辑处理部分手机射频、音频部分及外围的显示、听音、送语、插卡等部分均是在逻辑控制的统一指挥下完成其各自功能。 1 / 6 顺着前面讲的三种线中控制线的流向进行分析,可以弄清逻辑部分怎样对各部分进行功能控制。 3 输入输出部分在维修中主要指:显示、按键、振铃、听音、送话、卡座等部分,有时也称界面部分 二、手机的电路工作原理手机之所以能相互通信,是因为它是由三部分协调工作的结果,这三部分分别为射频部分、逻辑部分和电源部分,要了解手机的工作原理其实只要了解这三部分是如何工作的就可以了。 1. 射频部分通常射频部分,又是由接受信号部分和发送信号部分组成。接收: 从天线接收的935-960MHz 的射频信号,经U 400、SW363,将发射信号的接收信号分开,使收发互不干扰。 从U400 的第四脚输入第五脚输出,进入接收前端回路。 U400的工作状态受第三脚电位的控制,而第三脚电位又受到来自CPU 的TXON RXON信号的控制。 经过天线开关的射频信号首先经过带通滤波器FL451的滤波,再送入高频

手机刷卡器的作用及工作原理分析

什么是手机刷卡器,它的工作原理是什么? 用手机刷卡在很多人看来似乎是不可能实现的问题,将银行与再常见不过的手机连起来,就能用银行卡支付各种费用,这就像当初POS刷卡一样,在很多人看来不现实也不靠谱。目前国外市场上,手机刷卡器在square的引领下已经是红遍半边天,各种场所均可看见手机刷卡器的身影。 手机刷卡器是做什么的: 手机刷卡器带给的体验了其查询、支付、转账、充值等多项功能。硬件及界面配件需插在耳机插孔上。使用手机刷卡器,需要先下载其客户端,苹果iOS与Android系统都有对应的版本。通过3.5毫米标准耳机接口与智能手机连接后,进入页面进行注册、激活,就可以使用了。 进入客户端页面可以看到九宫格形式的功能图标,页面比较简洁、直观,以蓝色为主色调,快捷移动支付项目中包含银行业务、生活服务、网络支付及娱乐休闲四大类别。体验功能使用较为方便。 巧用手机刷卡器换信用卡: 众所周知,信用卡还款有全额还款、最低还款、分期还款三种方式。如果资金充裕,选择全额还款肯定是最划算的;如果缺钱了,大多数人都会选择最低还款,但实际上最低还款不仅不会享受免息还款待遇,而且还会被全额罚息;第三种还款方式分期还款则是一个不错的选择,持卡人只需支付一部分手续费便可继续享受免息待遇,并且可分期偿还欠款。目前大明世纪手机刷卡器可进行账单分期,支持的银行包括民生银行、广发银行等。用户无需拨打银行信用卡中心电话,只需在刷卡器上进行简单操作便可完成分期业务。 对于没时间的市民,可以选择在社区附近的便利店使用便民公共终端进行还款。目前刷

卡器支持近30家银行信用卡的还款业务,并且大多数银行实时到账且无手续费。在操作上也极为简单,用户只需输入手机号码、还款金额、分别刷信用卡和储蓄卡便可完成还款。 使用手机刷卡器的主要事项: 1.不能长时间将手机刷卡器插在手机上,这样手机刷卡器会持续消耗电池电量,很快没电,需要更换电池。 2.测试手机刷卡器时尽量平稳的插入手机刷卡器,并将手机音量开到最大。 3.使用手机刷卡器的时候必须输入正确的序列号。 4.如若使用不了的时候请检查是否电池电量已经耗尽。可到手表维修店铺购买CR2032纽扣电池替换。 5.刷卡器磁道较短,请确保刷卡时让整个磁条通过磁道中的磁头。 6.当第一次注册成功并输入刷卡器时,手机帐号和刷卡机序列号就会绑定在一起,只有这个刷卡器能使用账户充值功能。插入其他刷卡器不能使用。 7.应避免同一个刷卡器短时间内插入多个手机使用,公司后台可能会锁死刷卡器不能使用。 8.应避免同一个手机短时间内插入多个刷卡机使用,公司后台可能会锁死刷卡器不能使用。 9.注册成功后,确认刷卡器使用正常后,务必7天内点击软件里的“用户认证”,上传身份证原件到公司后台,否则7天后手机刷卡器会用不了。 那么手机刷卡器怎么使用呢,怎么样才能实现手机刷卡,缴费成功呢?其实手机刷卡器是操作非常简单,跟POS刷卡相似,再简单不过了。在说手机刷卡器只用之前,不得不说一下支撑手机刷卡完成的不大部分:智能手机、刷卡器客户端。手机刷卡器、刷卡器支持的银行卡。

手机的工作原理

-----------------------------------精品考试资料---------------------学资学习网----------------------------------- 手机的工作原理 一、手机的电路结构手机的结构可分为三部分,即射频处理部分、逻辑/音频部分以及输入输出接口部分主要电路组成: 1射频部分一般指手机射频接收与射频发射部分,主要电路包括: 天线、天线开关、接收滤波、高频放大、接收本振、混频、中频、发射本振、功放控制、功放等。 1.1发送部分发部分包括带通滤波、中频、发射本振、射频功率放大器、发射滤波器、天线开关、天线等。 1.2接收部分包括天线、天线开关、高频滤波、高频放大、混频、中频滤波和中频放大等电路。 对接收信号进行一级处理,最后得到推动听筒发声的音频信号。 解调大都在中频处理集成电路(IC)内完成,解调后得到频率相同的模拟同相/正交信号,然后进入逻辑/音频处理部分进行后级的处理。2逻辑/音频部分包括逻辑处理和音频处理两个方面的内容。 2.1音频处理部分 2.1.1发送音频处理过程来自送话器的话音信号经音频放大集成模块放大后进行A/D变换、话音编码、信道编码、调制,最后送到射频发射部分进行下一步的处理。 2. 1.2接收音频处理过程从中频输出的RXI、RXQ信号送到调制解调器进

行解调,之后进行信道解码、D/A变换,再送到音频放大集成模块进行放大。 最后,用放大的音频信号去推动听筒发声。 2.2逻辑处理部分手机射频、音频部分及外围的显示、听音、送语、 插卡等部分均是在逻辑控制的统一指挥下完成其各自功能。 1 / 6 顺着前面讲的三种线中控制线的流向进行分析,可以弄清逻辑部分怎样对各部分进行功能控制。 3输入输出部分在维修中主要指: 显示、按键、振铃、听音、送话、卡座等部分,有时也称界面部分二、手机的电路工作原理手机之所以能相互通信,是因为它是由三部分协调工作的结果,这三部分分别为射频部分、逻辑部分和电源部分,要了解手机的工作原理其实只要了解这三部分是如何工作的就可以了。 1.射频部分通常射频部分,又是由接受信号部分和发送信号部分组成。接收: 从天线接收的935-960MHz的射频信号,经U 400、SW363,将发射信号的接收信号分开,使收发互不干扰。 从U400的第四脚输入第五脚输出,进入接收前端回路。 U400的工作状态受第三脚电位的控制,而第三脚电位又受到来自CPU 的TXON、RXON信号的控制。

手机工作原理

手机工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

手机饰品的闪光原理 #1 一、CDMA手机饰品的闪光原理为什么中国移动GSM手机饰品挂在中国联通CDMA手机上不闪光这要从CDMA和GSM手机的工作原理谈起,GSM手机是采取将语音打包压缩后发射出去的,也就是说间隙脉冲工作的,工作时提高发射功率来保持语音清晰,其余时间不发射。而CDMA手机基台采用了定向天线系统,当基台发现有手机要工作时,便会启动定向系统指向手机所在的方向并计算手机最经济的发射功率,使手机发射功率维持在比较低的水平,也就是说CDMA手机系统是充分利用基台的定向系统优势,而让手机工作在小功率状态(这就是大家看到的CDMA手机的电池容量可以比GSM手机容量小而使用时间长的原因)。这样CDMA手机系统便可采用连续工作的方式发射信号,而不像GSM手机脉冲工作方式那样工作时大功率发射。目前市面上手机饰品是为GSM手机设计的,也就是说利用了GSM手机脉冲工作时大功率发射信号来触发IC闪光的。但对于CDMA手机GSM手机饰品就不会闪光了。本公司在充分研究CDMA手机系统后,开发了CDMA手机闪光饰品,她能在CDMA手机工作时触发专用IC闪光。这是目前世界上真正的第一款CDMA手机来电闪光饰品。二、手机贴纸的闪光原理当手机向基台传送信号时,手机发射的是很强的电磁波。根据电磁理论,电磁波在空中遇到天线,在天线的中段就会产生电压和电流。闪光贴纸其实就是一根接收天线,它把手机的电磁波信号变为电压和电流导致发光。但是为什么只有NOKIA的手机使用贴纸效果最好呢因为由于此类型的手机没有采用标准的高效率螺旋天线,为了达到通话清晰和不掉线的效果,此类手机设计时就增大了手机的发射功率。这也是此类手机电池不够其它手机电池使用时间长的原因。三、GSM手机饰品的闪光原理手机使用时,手机是一部信号发射接收器,不停地和基台进行接收和发射的交换。手机闪光饰品中有一块具有检测手机信号发射接收的专用IC,当接检测到手机有信号时,就启动IC工作―-发光或发声等等。早期的闪光吊饰采用的是通用IC,需要加外围电路来检测手机的信号,这样做体积大,不适用产品的小型化。而现在把检测手机信号的外围电路和闪光IC集成一起。 GSM手机工作原理简介 图1 FDMA、TDMA及CDMA之间的对照图 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA的比较如图2.1. 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是22.8kb/s,信道总传输速率270.83Kb/s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳

手机射频知识

GSM手机射频测试指导

目录 序言 (2) 第一章测试条件 (3) 1.1 正常测试条件 (3) 1.2 极限测试条件 (3) 1.3 震动条件 (3) 1.4 其它测试条件及规定 (4) 1.5 附件要求 (5) 第二章发射机指标及其测试 (6) 2.1 发射载波峰值功率 (6) 2.2 发射载频包络 (11) 2.3调制频谱(Spectrum Due to Modulation) (15) 2.4开关频谱(Spectrum Due to Switching) (18) 2.5频率误差(Frequency Error) (20) 2.6相位误差(Phase Error) (22) 2.7传导杂散骚扰(Conduct Spurious Emissions) (24) 2.8发射峰值电流和平均电流 (27) 第三章接收机指标及其测试 (29) 3.1接收灵敏度(Rx Sensitivity) (29) 3.2接收信号指示电平(RX Level) (33) 3.3接收信号指示质量(RX Quality) (35) 第四章其余测试补充 (38) 4.1 RC滤波电路对PA-RAMP的影响 (38) 4.2 PA匹配调整 (42) 4.3天线开关指标测试 (42) 第五章附录 (44)

序言 目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。 本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。 由于我们射频知识与经验有限,不足之处请指导。

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

手机射频接收功能电路分析

一、接收电路的基本组成 移动通信设备常采用超外差变频接收机。这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输入信号电平较高而且稳定。放大器的总增益一般需在120dB以上。这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的。另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,这也是难以做到的。超外差接收机则没有这种问题,它将接收到的射频信号转换成固定的中频,其主要增益来自于稳定的中频放大器。 手机接收机有三种基本的框架结构:一种是超外差一次变频接收机,一种是超外差二次变频接收机,第三种是直接变频线性接收机。 超外差变频接收机的核心电路就是混频器,可以根据手机接收机电路中混频器的数量来确定该接收机的电路结构。 1.超外差一次变频接收机 接收机射频电路中只有一个混频电路的称作超外差一次变频接收机。超外差一次变频接收机的原理方框图如图4-1所示。它包括天线电路(ANT)、低噪声放大器(LNA)、混频器(Mixer)、中频放大器(IF Amplifier)和解调电路(Demodula tor)等。摩托罗拉手机接收电路基本上都采用以上电路。 超外差一次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935,--960MHz或DCSl800频段1805---1880MHz)不断变频,经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大,放大后的信号再经射频滤波器后,被送到混频器。在混频器中,射频信号与接收VCO信号进行混频,得到接收中频信号。中频信号经中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67.707kHz的RXI/Q信号。2.超外差二次变频接收机 若接收机射频电路中有两个混频电路,则该机是超外差二次变频接收机。超外差二次变频接收机的方框图:如图4-2所示。 与一次变频接收机相比,二次变频接收机多了一个混频器和一个VCO,这个V CO在一些电路中被叫作IFVCO或VHFVCO。诺基亚手机、爱立信手机、三星、松下和西门子等手机的接收电路大多数属于这种电路结构。 在图4—1和图4-2中,解调电路部分也有VCO,应注意的是,该处的VCO 信号是用于解调,作参考信号而且该VCO信号通常来自两种方式:一是来自基准频率信号13MHz,另一种是来自专门的中频VCO。 超外差二次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935~960MHz或DCSl800频段1805—1880MHz)经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大放大后的信号再经射频滤波后被送到第一混频器。在第一混频器中,射频信号接收VCO信号进行混频,得到接收第一中频信号。第一中频信号与接收第二本机振荡信号混频,得到接收第二中频。接收第二本机振荡来自VHFVCO电路。接收第二中频信号经二中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67. 707kHz的RXI/Q信号。 3.直接变频线性接收机

手机各功能模块工作原理

一、手机下载工作原理: 1、手机主板加电,插入下载数据线; 2、开机信号使手机电源管理芯片工作,并产生复位信号; 3、启动IBOOT CODE引导程序; 4、运行内置在CPU System ROM内的Factory Programming程序; 5、CPU检测到通用异步串行端口UART1有效信号,用来配置下载所需参数; 6、CPU通过UTXD1、URXD1引脚将下载数据存入System RAM或者外部FLASH中。 7、完成程序文件下载。 二、手机开机工作原理: MT6305开启工作的三种方式: 1、将PWRKEY信号置为低电平; 2、将BBWAKEUP信号置为高电平; 3、CHRIN信号电平超过充电检测门槛电平Chr_Det; 开机的三种方式:按开机键开机、 <1>、按开机键开机: 1、手机装上电池,正常连接以后,电池电压VBAT 供至电源管理芯片MT6305N; 2、此时按下开/关机键时,启动MT6305N(U400)工作,输出VCORE- 1.8V、VDD-2.8V、VMEM-2.8V 、VRTC-1.5V、 AVDD-2.8V等供电电压,供电给手机各部分电路; 3、VRTC电压加至CPU,使得外接的X1晶体配合CPU内部的振荡电路起振,产生32.768K实时时钟信号; 4、当CPU的各路供电电压正常时,其输出信号VCXOEN将拉为高电平,控制MT6305输出VTCXO电压信号,该 电压加至U603(系统时钟振荡器)上,产生26M系统时钟信号,并经过中频IC MT6219、滤波电路送往CPU,以提供其正常工作所需的系统时钟信号; 5、MT6305N 由开机信号和内部的部分LDO输出电压触发产生复位信号RESET,复位信号送往各芯片使其复 位; 6、在电压、时钟均正常的情况下,CPU由于复位信号触发,运行开机引导程序; 7、CPU进行部分软硬件的自检,自检合格后送出电源IC维持信号BBWAKEUP,维持电源IC的正常工作,此时 可以松开开关机键。 8、完成开机过程。 <2>、充电开机:见充电原理部分。 三、手机充电原理: 电池的充电由手机充电程序和电源管理芯片MT6305N(U400) 控制。 手机处于开机状态时: 1、当充电器插入充电I/O 口后,VCHG信号送到电源管理IC MT6305,该信号触发产生充电中断信号CHRDET; 2、CPU接受中断请求,转而执行充电程序,显示充电图标,输出充电控制信号CHRCNTL给MT6305; 3、MT6305输出控制信号GATEDRY,开启U405,使其对电池进行充电; 4、MT6305通过电流检测信号ISENSE检测充电电流和电压检测信号VBATSENSE检测电池电压,来对充电的状 态进行控制; 5、当检测到电池已充满时,MT6305通过GATEDRY输出关闭充电信号,终止充电过程,充电结束。 手机处于关机状态时: 1、当充电器插入充电I/O 口后,VCHG信号送到电源管理IC MT6305; 2、MT6305检测到该信号后,与充电门槛电平相比较,当充电信号电平高于门槛电平时,该信号将触发MT6305正常工作,输出各路电压,并产生复位信号; 3、CHRIN信号将触发产生充电中断信号CHRDET送往CPU; 其它步骤同开机状态充电时的2-5步。

智能手机指南针的工作原理

2、试详细解释智能手机指南针的工作原理(并绘出其传感原理图)? 答: 1、手机装入软件能分出东南西北是因为手机中内置了电子指南针,电子指南针又称作电子罗盘。电子罗盘的原理是测量地球磁场,按其测量磁场的传感器种类的不同,目前国内市场上销售的电子罗盘可分为以下有三种:磁通门式电子罗盘、霍尔效应式电子罗盘和磁阻效应式电子罗盘。 (1)磁通门式电子罗盘。根据磁饱和原理制成,它的输出可以是电压,也可以是电流,还可以是时间差,主要用于测量稳定或低频磁场的大小或方向,其代表产品是美国KVH工业公司的一系列磁通门罗盘及相关附件。从原理上讲,它通过测量线圈中磁通量的变化来感知外界的磁场大小,为了达到较高的灵敏度,必须要增加线圈横截面积,因而磁通门式电子罗盘不可避免的体积和功耗较大,易碎、响应速度较慢,处理电路相对复杂,成本高。 (2)霍尔效应式电子罗盘。霍尔效应是1879年霍尔首先在金属中发现的。当施加外磁场垂直于半导体中流过的电流就会在半导体中垂直于磁场和电流的方向产生电动势。这种现象称为霍尔效应。其工作原理如图1.1所示。 图1.1霍尔效应原理 如果沿矩形金属薄片的长方向通一电流I,由于载流子受库仑兹力作用,在垂直于薄片平面的方向施加强磁场B,则在其横向会产生电压差U,其大小与电流I、磁场B和材料的霍尔系数R成正比,与金属薄片的厚度d成反比。100多年前发现的霍尔效应,由于一般材料的霍尔系数都很小而难以应用,直到半导体的问世后才真正用于磁场测量。这是因为半导体中的载流子数量少,如果通过它的电流与金属材料相同,那么半导体中载流子的速度就快,所受到的洛伦兹力就更大,因而霍尔效应的系数也就更大。 我们可以把地球磁场假定为和地平面平行,而如果在手机的平面垂直的放上两个这样的霍尔器件,就可以感知地球磁场在这两个霍尔器件的磁感应强度的分量,从而得到地球磁场的方向,有点类似于力的分解。 霍尔效应磁传感器的优点是体积小,重量轻,功耗小,价格便宜,接口电路

手机软件工作原理

手机软件工作原理 手机的雏形十分类似于对讲机,最早出现在20世纪40年代,曾在第二次世界大战用于军事通话,是后来的“大哥大”的前身。哪个时候还没有手机软件的概念,手机上也没有任何增值的服务。后来手机逐渐从军用转为商用`民用,随着手机用户需求的不断扩充,手机几其软件技术也不断发生着变化。“手机软件”对绝大多数人来说,是一个陌生的字眼。其实他造就存在于我们的手机中。有没有想过,我们手机中各式各样的游戏实际上就是一个个小小的软件!甚至,简单的查询一个电话号码,也依*软件来实现。现在网上就有许多下载手机软件的地方,这些软件花样繁多,功能不一,可以满足我们同的需求。首先,我们可以通过软件来设定手机的开几或待机的界面,相信你一定看过一些手机的显示屏上有一些好看的图片或着是自己的名字,这都是软件的功劳;其次,你可以下载一些游戏软件来丰富手机中的游戏;听惯了一成不变的铃声,你一定想别出心裁的加进你喜爱的音乐吧!没问题,时尚化手机音乐编辑软件可以帮你实现这个梦想。当你自己编辑的铃声引得别人侧耳时,你是否也有一点小小的成就感呢软件在手机中的作用不仅仅是这些,以上只是为应有层服务的,真正技术的飞跃还是要从地层做起。现在,就有许多手几制造厂商以及软件提供商上在做这方面的研究。我们作为维修人员,当然好应该知道许多写字库软件`解锁软件`升级软件等,这些软件都是针对不同品牌的手机服务的。手机软件技术也可按技术含量高低分为三层:技术含量低的是人机界面软件,稍高一些的是接口软件和模块软件,最高的是基础通信软件。。第一次层次是OperatingSystem(OS,操作系统),主要与RF(射频信号)芯片进行沟通与指令处理,它基于一些基础的网络协议(如GSM`GPRS或CDMA`WCDMA)等;第二层次是内置的手机本地应用,例如电话薄`短信息等内容,更为重要的是,再一些手机上已经集成J2ME的开发平台,即它可以运行第三方开发的应用程序;第三次是在J2ME平台上开发的一些Kjava平台上开发的一些Kjava应用程序(如各种游戏`图片浏览等),还有一些API 的借口函数,可以同外部的PC通过线缆进行数据串送,也可以通过无线方式与外界的应用服务提供商进行传递数据。目前,各种各样的多媒体应用已经成为高端手机功能的卖点,手几开始与PDA相融合,也开始告别话音时代走向移动办公。现代新手机具体功能的扩展,体现在以下方面: .交互性;在当前的手机交互界面的设计中,动画与图案都被引入界面设计,这在早期几乎是看不到的。 .个人助理及娱乐功能;个人助理指电话本`名片夹`日历`日程表`闹钟`声控拨号`录音等功能;娱乐功能体现在MP3播放功能`FM调频收音机功能`游戏等。 .软件可扩展性;在手机上装载KVM,解释JAVA程序,用于括宽应用软件的来源,同时也可以方便用户自己增删一些较简单的附加功能。手机的软件就是放在逻辑系统里,而逻辑系统基本上是由一个单片机系统组成的。众所周知,GSM手机逻辑系统的核心元件是中央处理器,大家把它叫CPU。它具有数字信号处理器(DSP)与微控制(MCU)的功能。 CPU 是根据指令来工作的。一连串的指令集组成了一个完整的(CPU)工作程序,程序的运行与计算机往往还需要相关的数据参数,比如:射频控制参数,包括频率和成器参数`接受参数`发射参数`功率控制参数等;逻辑控制,包括显示参数`语言参数`串号`电池门限参数`放大器增益参数;而软件就是控制程序和工作数据参数的总和。在电子学中,单片微型计算机(One Chip Microcomputer)就是是微型控制器,简称单片机。单片的含义是这种微型计算机中只有一块主芯片(集成电路)。由于单片微型计算机的设计充分考虑了控制上的需要,它具有独立的硬件结构`指令系统和多种输入/输出功能的设计充分考虑了控制上的需要,它具有独立的硬件结构`指令系统和多种输入/输出功能,提供了十分有效的控制功能,所以称之微控制器。微控制器作为微型计算机的一个重要分支,应用非常广泛,发展速度也很快,现代凡含有数字电路的家用电器中,包括移动电话几乎都不少不了微控制器。

相关主题