搜档网
当前位置:搜档网 › 输入电容纹波电流有效值计算公式的推导

输入电容纹波电流有效值计算公式的推导

输入电容纹波电流有效值计算公式的推导
输入电容纹波电流有效值计算公式的推导

输入电容纹波电流有效值

相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算:

Icin.rms =Io ×

()D D ×?1

或Icin.rms =Io ×

2

)(Vin

Vo

Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。

众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有:

??

?=<<<<)()

(01DTs t o Io Ts t DTs Iq

而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出:

Iin =(V o/Vin)*Io =DIo

由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有:

输入电流(Iin)波形:

Icin =Iq1-Iin

即:

{

)0()

(DTs t DIo Io T t DTs DIo Icin <

对Icin 的表达式可以这样理解:在Q1导通期间输入端和输入电容共同向输出端提供电流,因此输入电容电流等于Q1电流减去输入端电流;在Q1关断期间输入端对电容充电,以补充在Q1导通期间所泄掉的电荷,而此 时电流方向与所定义的正向是相反

的,所以有Icin =-DIo

根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式:

])()([1.022

∫∫

?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin

)]()()[(1

.22DTs Ts DIo DTs DIo Io Ts

rms Icin ?×+×?=

即:

又因为有D

D Io rms Icin ×?=)1(.Vin

Vo

D =,所以得: 2

)(.Vin Vo

Vo Vin Io

rms Icin ?=

Q1电流(Iq1)波形:

变频器中直流母线电容的纹波电流计算

變頻器中直流母線電容的紋波電流計算 1 引言 各類電動機是我們發電量的主要消耗設備,而變頻器作為電動機的驅動裝置成為當前“節能減排”的主力設備之一。它一方面可以起到節約能源消耗的作用,另一方面也可以實現對原有生產或處理工藝過程的優化。目前應用最多也最廣的是交-直-交電壓型變頻器,即中間存在直流儲能濾波環節,一般採用大容量電解電容器實現此功能。 使用電解電容器的作用主要有以下幾個[1]: (1)補償以電源頻率兩倍或六倍變化的逆變器所需功率與整流橋輸出功率之差; (2)提供逆變器開關頻率的輸入電流; (3)減小開關頻率的電流諧波進入電網; (4)吸收急停狀態時所有功率開關器件關斷下的電機去磁能量;(5)提供暫態峰值功率; (6)保護逆變器免受電網暫態峰值衝擊。 電解電容器設計選型所需要考慮的主要因素有以下幾個:電容器的電壓、電容器量、電容器的紋波電流、電容器的溫升與散熱、電容器的壽命等等。這些因素對變頻器滿足要求的平均無故障時間(MTBF)十分重要。然而電解電容器的紋波電流的計算如何能明確給出計算依據,這是本文所要解決的問題。

2 直流母線電容紋波電流的計算 紋波電流指的是流過電解電容器的交流電流,它使得電解電容器發熱。紋波電流額定值的確定方法是在額定工作溫度下規定一個允許的溫升值,在此條件下電容器符合規定的使用壽命要求。當工作溫度小於額定溫度時,額定紋波電流可以加大。但過大的紋波電流會大大縮短電容器的耐久性,當紋波電流超過額定值,紋波電流所引起的內部發熱每升高5℃,電容器器的壽命將減少50%。因此當要求電容器器具有長壽命性能時,控制與降低紋波電流尤其重要。 但在實際設計過程中,電解電容器的紋波電流由於受變頻器輸入輸出各物理量變化以及控制方式等的影響很難直接計算得到[2],一般多採用根據實際經驗估算大小,如每μf電容器要求20ma紋波電流之類的經驗值,或者通過電腦模擬來估算[3~6]。 本文根據對變頻器電路拓撲與開關調製方式的分析,並借鑒已有文獻資料,歸納出一個直接的計算電解電容器紋波電流的方法,供大家參考。 圖1 變頻器拓撲示意圖 由圖1可以得到直流母線電容的紋波電流ic=il-i,il和i分別是整流器

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

如何准确计算电源滤波器中的漏电流

如何准确计算电源滤波器中的漏电流 1 引言 在电气设备的正常运行过程中,一部分电流沿着保护接地导体流入大地。这些电流称为漏电流,是用户的一个安全隐患,因此,大多数产品安全标准均对漏电流进行了限制。人们越来越多地使用剩余电流设备或者漏电流断路器,当检测到漏电流过高时,这些设备将断开电源。 电源线路滤波器,或者emc滤波器,通过它们的对地电容器影响设备的总漏电流。当今的技术已使噪声抑制滤波器的使用成为必需,这样,漏电流对于最终用户更为重要。客户经常对漏电流的额定值感到困惑,因为滤波器制造商不使用统一的方法进行计算。因此,采用相同的电路,但是由不同制造商制造的滤波器的漏电流不能直接比较。本文叙述了关于漏电流的基本内容,包括计算和测量方法等。 2 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,对保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。对办公室设备和信息技术设备的产品安全标准en 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过 3.5ma,采用下文所述的测量方法进行测量。 3.5ma的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(b型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5ma。另外,等电位联结导体的最小截面积必须符合en 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告!强接触电流。先接地。”;“警告!强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源emi滤波器的安全标准。在欧洲,新颁布了en 60939,自2006年1月1日起代替了当时现行的en 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的emi滤波器标准,ul 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5ma。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 3 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于三相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对连续生产的每一个滤波器都进行漏电流测量是不合理的,所以一般来说,制造商提供的漏电流都是根据计算值。 对于所有的计算,磁性元件的寄生元件及保护接地器的阻抗均忽略不计。计算时只考虑滤波器电容的误差。emi 滤波器电容一般用来抑制差模和共模干扰。对于前者,在相位之间,以及相位和中性导体之间,连接有所谓的x电容。对于共模抑制,相位和接地之间采用y电容。 电容器对于频率和电压的依存关系也没有考虑。这对于陶瓷电容器是非常重要的,因为这种电容器会受到电压和频率的明显影响。因此,采用陶瓷电容器的滤波器的漏电流也比计算结果更大。 3.1 三相供电网中的漏电流 要计算三相供电网中的漏电流,需要确定电源中性点mq和负载中性点ml之间的电压。在电源端,是3个相电压ul1、ul2和ul3,与中性点mq相连接。在负载端,是3个阻抗z1、z2和z3,也与一个星形相连接,如图1所示。两个中性点mq和ml通过阻抗zql相连,此阻抗上的压降为uql。

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

DCDC Buck Converter输入电容纹波电流有效值

输入电容纹波电流有效值 相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算: Icin.rms =Io × ()D D ×?1 或Icin.rms =Io × 2 )(Vin Vo Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。 众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有: ?? ?=<<<<)() (01DTs t o Io Ts t DTs Iq 而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出: Iin =(V o/Vin)*Io =DIo 由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有: 输入电流(Iin)波形: Icin =Iq1-Iin 即: { )0() (DTs t DIo Io T t DTs DIo Icin <

的,所以有Icin =-DIo 根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式: ])()([1.022 ∫∫ ?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin )]()()[(1 .22DTs Ts DIo DTs DIo Io Ts rms Icin ?×+×?= 即: 又因为有D D Io rms Icin ×?=)1(.Vin Vo D =,所以得: 2 )(.Vin Vo Vo Vin Io rms Icin ?= Q1电流(Iq1)波形:

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

贴片陶瓷电容知识(介质,DF,漏电,应用等)

AVX/松下/华亚/国巨/TDK ,TAIYO,村田(不是春田啊),AVX 单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高 介质损耗最大0。15% 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。适用于低损耗,稳定性要求要的高频电路 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。常规10000PF以下,10000PF-1UF也能生产但价格较高 介质损耗最大2。5%(25V与50V)3。5%(16V) 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。

电解电容纹波的测试,计算及判定_ 应用报告

一、前言: 铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。所以在实际使用中,电解电容Ripple Current 有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。 二、标准测试: 1、一次侧Bulk Cap.纹波电流 说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current) 一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。 图(1) 2、二次侧Filter Cap.纹波电流 说明:二次侧Filer Cap.纹波电流通常由高频电流构成。 R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。 3、温度 机种名称: 机种编号: 机种类别: 电路拓扑: 输出规格: 编写单位: 应用类别: 材料应用 受控日期: 201 年 月 日 应用编号: AR500XbcEedDFf P 应用描述: 电解电容纹波电流的测试,计算及判定

关于纹波系数的确定和计算

关于纹波系数的确定和计算 工频50Hz全波整流 全波整流输出为100Hz脉动直流,此时直流电压平均值为交流电压的0.9倍。也就是说交流100V 全波整流输出电压为90V。此时直流脉动系数为0.67,也就是说在这90V直流中交流电压分量为 60.3V。此时纹波系数为: 0.707X0.67=0.47=47% 【注:纹波的表示方法可以用有效值或峰值来表示;这里用的是有效值】 1:C型滤波: 在全波整流电路后面增加一个电容就构成了C型滤波。此时输出直流电压平均值上升为交流电压的1.2倍。纹波系数大小与滤波电容、纹波频率、负载电阻成反比。 纹波系数r=0。072/(f/C*RL) (C=F)r=1440/(C*RL) (C=uF) (新建)例:RL=2700欧f=50Hz C=40uF r=0。072/50/(0。00004x2700)=0。013% 2:LC型滤波: 整流器与电容之间增加一个电感就构成LC型滤波。这是利用电感对交流有感抗的特性。由于电感 有抑制电流突变特性使滤波电容两端的电压不能充到峰值。因此LC型滤波输出直流电压平均值小于交流电压的1.2倍,大约0.95。相位差接近180度。 电感临界值=RL/942 LC型滤波电路滤波系数=0.4*L*C LC型纹波系数r=0.47 / 滤波系数r=1。175/L*C (C=uF) 假设负载电阻RL=4700欧,4700/942约等于5.11H是临界电感量。 L常规应用时取该值大于或等于2RL/942 例:电流I=170mA,DC=420V,根据U=IR此时电路负载电阻R=U/I=2470欧。 电感临界值=2470/942约等于2.62H。电感取2XL=4.940H或以上 设L=5H,C=40uF,滤波系数为0.4*5*40=80。 LC型滤波电路纹波系数r=0.47/ 滤波系数=0.47/80=0。005875=0。5875% 或直接用r=1。175/LC=1。175/(5X80)=0。005875=0。5875% 3:CLC型滤波: CLC型滤波是在LC型滤波基础上改良的兀型滤波 CLC滤波系数:130*L*C1*C2*RL/1000000 CLC纹波系数r=0.47 / 滤波系数r=3615/(C1*L*C1*RL)(C=uF) C滤波 LC滤波 CLC滤波

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

纹波电流计算例子

电容器纹波电流有效值的计算 要正确计算纹波电流有效值,理论上应将电容器纹波电流波形进行傅利叶分析,得出各次频率下流过电容的纹波电流值。然后求出各次频率下的电容等效串联电阻ESR。最后根据损耗相等的原则求出总的纹波电流有效值。 图1-1 图1-2 图1-1为某一电路中流过电容100μF /420V的纹波电流波形,图1-2为在某点展开时的高频电流波形,求解该电容的纹波电流有效值。 从图1-1中将高频分量去除可以得出100Hz时的电流波形,如图1-3所示: 图1-3 根据曲线可以将其分为三段来进行积分计算,具体的纹波电流有效值为: 6.068 rms I A = 其中T1=1ms(第一段的维持时间),I1=-2.6A(第一段的起始电流),I rp1=19.825+2.6=22.425A (第一段的脉动电流); T2=1.75ms(第二段的维持时间),I2=19.825A(第二段的起始电流),I rp2=-22.425A(第二段的脉动电流); T3=7.25ms(第三段的维持时间),I1=-2.6A(第三段的起始电流),I rp1=0A(第三段的脉动电流); T=10ms(总周期) 查电容手册可知CD294 400V/470μF电容在120Hz下的ESR为0.22欧。 图1-2为58.8KHz下的纹波电流叠加了一个低频电流,因此只需去除图1-2中的低频直

流分量就可以得到58.8KHz 下的纹波电流波形,如图1-4所示: 图 1-4 计算出有效值 4.863rms I A = 其中T 1=10μs (第一段的维持时间),I 1=4A (第一段的起始电流),I rp 1=0A (第一段的脉动电流) T 2=7μs (第二段的维持时间),I 1=-3.2A (第二段的起始电流),I rp 1=-5A (第二段的脉动电流) T =17μs (总周期) 考虑到在高频情况下,纹波电流波形存在毛刺,因此取有效值电流为5A 。在此频率下ESR 为20.220.1531.2 =Ω,其中1.2为频率系数,可以查电容手册得到。 两种频率下的纹波电流总共产生的损耗为:226.0680.2250.15311.925W ?+?= 根据损耗相等原则将两种频率下的纹波电流值折合成120Hz 时 的电流值7.36A =。 注:理论上计算纹波电流有效值的方法(如上所示)比较繁琐,在工程上可以通过示波器直接读出该波形的有效值,该值与理论计算出来的值相差不多。在本例中示波器读出的纹波电流有效值为6.27A 。

电解电容寿命与纹波电流测试

电解电容寿命纹波电流测试 E-cap Lifetime Test 1. 工作原理/Working principle ★ 当U2为正半周并且数值大于电容两端电压Uc时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。当Uc>U2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,Uc按指数规律缓慢下降。 ★ The diode D1&D3 work, D2&D4 cut off, the current flows through the load resistance RL in a loop and charge the capacitor C up when U2 in the positive half circuit and its value exceeding the voltage Uc which is parallel connected in the two terminals of capacitor. When Uc exceeds U2, and causes the diode D1&D3 cut off, the capacitor discharge through the load resistance RL and Uc decline slowly according to the principle of index function. ★ 当U2为负半周幅值变化到恰好大于Uc时,D2和D4因加正向电压变为导通状态,U2再次对C充电,Uc上升到U2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,Uc按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。 ★ As the same reason , when U2 in the negative half circuit and the amplitude is even changed to exceed Uc ,the diode D2&D4 work due to the positive voltage and U2 charge capacitor C up again. Uc start to decline when it’s voltage rise to the peak value of U2 and to a certain value , the diode D2&D4 cut off , the capacitor C discharge to RL, Uc decline according to the principle of index function again. When the discharge to a certain value, the diode D1&D3 work again and the cycle repeats.

关于X Y电容器的泄漏电流

关于XY电容器的泄漏电流 翻开百度百科,关于电容器的漏电流是这样解释的: 电容介质不可能绝对不导电,当电容加上直流电压时,电容器会有漏电流产生。若漏电流太大,电容器就会发热损坏。除电解电容外,其他电容器的漏电流是极小的,故用绝缘电阻参数来表示其绝缘性能;而电解电容因漏电较大,故用漏电流表示其绝缘性能(与容量成正比)。 对电容器施加额定直流工作电压将观察到充电电流的变化开始很大,随着时间而下降,到某一终值时达到较稳定状态这一终值电流称为漏电流。 其计算公式为:i=kcu(μa);其中k值为漏电流常数,单位为μa(v·μf)。 一般塑胶膜电容器及陶瓷电容器的标准(IEC60384-8/ GB/T 5966, IEC60384-9/ GB/T 5968),或安规塑胶膜电容器(X电容)及陶瓷电容器(Y电容)的标准(如IEC 60384-14/GBT 6364.14)都无泄漏电流特性要求。 关于XY 电容器,国际间都未定义泄漏电流(Leakage Current)的产业标准,制造业者难以遵循。民间使用者偶而会提起这个议题,但翻阅电容器国际大厂的目录,诸如AVX、Mallory及Murata三个公司,也只有Murata有提供其Y电容的漏电流特性曲线,表示其某几种Y电容对应工作电压高低时的漏电流变化。 AVX的目录就只有说明电容器泄漏电流的理论值应参照欧姆定律I = E/R计算(Leakage current is determined by dividing the rated voltage by IR), 以上式欧姆定律电流公式改成泄漏电流公式即成: IL = UR / IR IL:泄漏电流, 单位是A, 常以豪安(mA)为计算单位 UR:电容器额定工作电压表示, 单位是V IR:绝缘电阻, 单位是欧姆Ω, 常以百万欧姆(MΩ)为计算单位 至于XY电容器在制造程中的耐电压测试时会设定漏电流的极限值(交流电路), 与依欧姆定律而设计的漏电流表(直流电路)所得的漏电流值会不同。

电解电容寿命的计算方法

Load life If the capacitor`s max.operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) for Lo hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification. where L0 is called ”load life” or “useful life (lifetime) at 105℃(85℃)”. L x=L0x2(To-Tx)/10x2—△Tx/5where △T x=△T0x(I x/I0)2 Ripple life: If the capacitor`s max .operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) with the ripple current for Lr hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification . where Lr is called ”ripple life” or ”useful ripple life (ripple lifetime) at105℃(85℃) ”. Lx= L r x2(To-Tx)/10x2(△To-△Tx)/5where △T x=△T0x(Ix/I0)2 The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation , but this expectancy formula does not apply for ambient below+40℃. L0 = Expected life period (hrs) at maximum operating temperature allowed Lr = Expected ripple life period (hrs) at maximum operating temperature allowed Lx = Expected life period (hrs) at actual operating temperature T0 = Maximum operating temperature (℃) allowed Tx = Actual operating ambient temperature(℃) Ix = Actual applied ripple current (mArms) at operating frequency fo (Hz) I0 = Rated maximum permissible ripple current IR (mArms) x frequency multiplier (C f) at f0 (Hz) △T0≦5℃= Maximum temperature rise (℃) for applying Io (mArms) △Tc = Temperature rise (℃) of capacitor case for applying Ix (mA/rms) △T x = Temperature rise (℃) of capacitor element for applying Ix (mArms) = K c△T c= K c(T c-T x) where T c is the surface temperature (℃) of capacitor case Tx is ditto. K c is transfer coefficient between element and case of capacitor From table below: Dia ≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35Φ Kc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65

电解电容器中的纹波电流和额定纹波电流

电解电容詣中的纹波电流和颔定纹波电流 电解电容器在使用过程。加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:???C=Q∕V=( dQ∕dt)∕(dV∕dt) dQ∕dt=l ???I= C*(dV∕dt) 电解电容器在使用过程中有一个重要参数:电解电容器 的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。它是由电解电容器制造商给出的。电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。 电解电容器的额定纹波电流的确定,主要是根据该规格电解电容 器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的O 在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以 下几点。 K电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就 是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型

的重要观注点之一,这个一般各制造商在其产品手册上者0会给出O 2、电解电容的等效串联电阻ESR, ESR大小决定了纹波电流在电解电容器中的发热量的大小。 理论上讲纹波电流在电解电容器中产生的热量(单位时间里): Q-I2*ESR 这里I是纹波电流的有效值。ESR是电容器的等效串联电阻。 3、电解电容在上限温度时,电解电容内部的压力。 当工作时,电解电容工作时所处的环境温度比较高。由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。内部总压力不能大于电解电容器铝壳安全阀的抗压强度,否则安全阀会开启,电解电容器失效。电解电容器内部压力和外部压力差是造成电解液泄漏的原因。 4、电解电容的密封特性。 由于电解电容的电解液是液态的,电解电容在工作时,电解液汽化产生蒸汽压,为防止电解液逃逸造成电解失效,就用铝壳和胶盖将芯子密封起来,胶盖与铝壳和芯子铝梗的密封,是一种非匹配密封,都会有一定的泄露,泄露的大小除与胶盖材质封接表面光洁度,铝壳铝梗表面光洁度,封口工艺,铝

滤波电容工程粗略计算公式

滤波电容工程粗略计算公式 铝电解电容容量比较大,主要用于滤除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不太清了)是容量下降的很快 有一个粗略估算公式,常用于工程计算:按RC时间常数近似等于3~5倍电源半周期估算。给出一例: 负载情况:直流1A,12V。其等效负载电阻12欧姆。 桥式整流: RC = 3 (T/2) C = 3 (T/2) / R = 3 x (0.02 / 2 ) / 12 = 2500 (μF) 工程中可取2200 μF,因为没有2500 μF这一规格。若希望纹波小些,按5倍取。这里,T是电源的周期,50HZ时,T = 0.02 秒。时间的国际单位是S。 全波整流结果一样,但半波整流时,时间常数加倍。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用 0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的 ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为 WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。

相关主题